Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spectroscopic confirmation of a galaxy at redshift z = 8.6


Galaxies had their most significant impact on the Universe when they assembled their first generations of stars. Energetic photons emitted by young, massive stars in primeval galaxies ionized the intergalactic medium surrounding their host galaxies, cleared sightlines along which the light of the young galaxies could escape, and fundamentally altered the physical state of the intergalactic gas in the Universe continuously until the present day1,2. Observations of the cosmic microwave background3, and of galaxies and quasars at the highest redshifts4, suggest that the Universe was reionized through a complex process that was completed about a billion years after the Big Bang, by redshift z ≈ 6. Detecting ionizing Lyman-α photons from increasingly distant galaxies places important constraints on the timing, location and nature of the sources responsible for reionization. Here we report the detection of Lyα photons emitted less than 600 million years after the Big Bang. UDFy-38135539 (ref. 5) is at a redshift of z = 8.5549 ± 0.0002, which is greater than those of the previously known most distant objects, at z = 8.2 (refs 6 and 7) and z = 6.96 (ref. 8). We find that this single source is unlikely to provide enough photons to ionize the volume necessary for the emission line to escape, requiring a significant contribution from other, probably fainter galaxies nearby9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two representations of the spectrum of UDFy-38135539 showing its significance.
Figure 2: Lyα line image of UDFy-38135539.
Figure 3: The predicted Lyα flux for a given ultraviolet flux density.

Similar content being viewed by others


  1. Mesinger, A. & Furlanetto, S. Efficient simulations of early structure formation and reionization. Astrophys. J. 669, 663–675 (2007)

    Article  ADS  Google Scholar 

  2. Choudhury, T. R., Haehnelt, M. G. & Regan, J. Inside-out or outside-in: the topology of reionization in the photon-starved regime suggested by Ly-alpha forest data. Mon. Not. R. Astron. Soc. 394, 960–977 (2009)

    Article  ADS  Google Scholar 

  3. Komatsu, E. et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. (submitted); preprint at 〈〉 (2010)

  4. Fan, X. et al. Constraining the evolution of the ionizing background and the epoch of reionization with z 6 quasars. II. A sample of 19 quasars. Astron. J. 132, 117–136 (2006)

    Article  ADS  CAS  Google Scholar 

  5. Bouwens, R. J. et al. Discovery of z 8 galaxies in the Hubble Ultra Deep Field from ultra-deep WFC3/IR observations. Astrophys. J. 709, L133–L137 (2010)

    Article  ADS  CAS  Google Scholar 

  6. Tanvir, N. R. et al. A γ-ray burst at a redshift of z ≈ 8.2. Nature 461, 1254–1257 (2009)

    Article  ADS  CAS  Google Scholar 

  7. Salvaterra, R. et al. GRB090423 at a redshift of z ≈ 8.1. Nature 461, 1258–1260 (2009)

    Article  ADS  CAS  Google Scholar 

  8. Iye, M. et al. A galaxy at a redshift z = 6.96. Nature 443, 186–188 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Loeb, A., Barkana, R. & Hernquist, L. Was the universe reionized at redshift 10? Astrophys. J. 620, 553–558 (2005)

    Article  ADS  CAS  Google Scholar 

  10. McLure, R. J. et al. Galaxies at z = 6–9 from the WFC3/IR imaging of the Hubble Ultra Deep Field. Mon. Not. R. Astron. Soc. 403, 960–983 (2010)

    Article  ADS  Google Scholar 

  11. Ouchi, M. et al. The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα emitters from z = 3.1 to 5.7 in the 1 deg2 field: luminosity functions and AGN. Astrophys. J. Suppl. Ser. 176, 301–330 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Ota, K. et al. Reionization and galaxy evolution probed by z = 7 Lyα emitters. Astrophys. J. 677, 12–26 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Ouchi, M. et al. Large Area Survey for z = 7 galaxies in SDF and GOODS-N: implications for galaxy formation and cosmic reionization. Astrophys. J. 706, 1136–1151 (2009)

    Article  ADS  CAS  Google Scholar 

  14. Castellano, M. et al. Evidence of a fast evolution of the UV luminosity function beyond redshift 6 from a deep HAWK-I survey of the GOODS-S field. Astron. Astrophys. 511, A20–A36 (2010)

    Article  Google Scholar 

  15. Verma, A., Lehnert, M. D., Förster Schreiber, N. M., Bremer, M. N. & Douglas, L. Lyman-break galaxies at z 5 - I. First significant stellar mass assembly in galaxies that are not simply z 3 LBGs at higher redshift. Mon. Not. R. Astron. Soc. 377, 1024–1042 (2007)

    Article  ADS  Google Scholar 

  16. Stark, D. P. et al. The evolutionary history of Lyman break galaxies between redshift 4 and 6: observing successive generations of massive galaxies in formation. Astrophys. J. 697, 1493–1511 (2009)

    Article  ADS  Google Scholar 

  17. Bouwens, R. J. et al. Very blue UV-continuum slope β of low luminosity z 7 galaxies from WFC3/IR: evidence for extremely low metallicities? Astrophys. J. 708, L69–L73 (2010)

    Article  ADS  CAS  Google Scholar 

  18. Bromm, V., Kudritzki, R. P. & Loeb, A. Generic spectrum and ionization efficiency of a heavy initial mass function for the first stars. Astrophys. J. 552, 464–472 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Labbé, I. et al. Star formation rates and stellar masses of z = 7–8 galaxies from IRAC observations of the WFC3/IR Early Release Science and the HUDF fields. Astrophys. J. 716, L103–L108 (2010)

    Article  ADS  Google Scholar 

  20. Furlanetto, S. R., Haiman, Z. & Oh, S. P. Fossil ionized bubbles around dead quasars during reionization. Astrophys. J. 686, 25–40 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Miralda-Escude, J. Reionization of the intergalactic medium and the damping wing of the Gunn-Peterson trough. Astrophys. J. 501, 15–22 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Wyithe, J. S. B. & Loeb, A. Undetected sources allow transmission of the Lyα line from galaxies prior to reionization. Astrophys. J. 625, 1–5 (2005)

    Article  ADS  CAS  Google Scholar 

  23. Dijkstra, M. & Wyithe, S. Seeing through the trough: outflows and the detectability of Lyα emission from the first galaxies. Mon. Not. R. Astron. Soc. 10.1111/j.1365-2966.2010.17112.x (in the press)

  24. Wyithe, J. S. B. & Loeb, A. A characteristic size of 10 Mpc for the ionized bubbles at the end of cosmic reionization. Nature 432, 194–196 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Miralda-Escudé, J., Haehnelt, M. & Rees, M. J. Reionization of the inhomogeneous Universe. Astrophys. J. 530, 1–16 (2000)

    Article  ADS  Google Scholar 

  26. Scalo, J. in The Stellar Initial Mass Function (38th Herstmonceux Conference) (eds Gilmore, G. & Howell, D.) 210–209 (ASP Conf. Ser. 142, Astronomical Society of the Pacific, 1998)

    Google Scholar 

  27. Deharveng, J.-M. et al. Constraints on the Lyman continuum radiation from galaxies: first results with FUSE on Mrk 54. Astron. Astrophys. 375, 805–813 (2001)

    Article  ADS  CAS  Google Scholar 

  28. Inoue, A. K., Iwata, I., Deharveng, J.-M., Buat, V. & Burgarella, D. VLT narrow-band photometry in the Lyman continuum of two galaxies at z 3. Limits to the escape of ionizing flux. Astron. Astrophys. 435, 471–482 (2005)

    Article  ADS  CAS  Google Scholar 

  29. Bergvall, N. et al. First detection of Lyman continuum escape from a local starburst galaxy. I. Observations of the luminous blue compact galaxy Haro 11 with the Far Ultraviolet Spectroscopic Explorer (FUSE). Astron. Astrophys. 448, 513–524 (2006)

    Article  ADS  CAS  Google Scholar 

Download references


We thank the Director General of the ESO for generous allocation of time and the staff on Paranal for conducting the observations. We also thank F. Combes, S. Zaroubi, M. Haehnelt, D. Valls-Gabaud and J. Dunlop for discussions.

Author information

Authors and Affiliations



M.D.L. led the writing of the paper and the presentation of the results and was responsible for the modelling shown in Fig. 3. N.P.H.N. designed the observations, reduced all of the data and was responsible for the data shown in Figs 1 and 2. A.M.S., J.-G.C., B.C. and S.B. also examined the data. S.M., M.N.B., N.P.H.N. and A.M.S. helped significantly in editing the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to M. D. Lehnert or N. P. H. Nesvadba.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Information comprising: Observations and data reduction; The nature of the line and Other Possible Sources of Line Emission. It also contains Supplementary Figures 1-3 with legends and additional references. (PDF 168 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehnert, M., Nesvadba, N., Cuby, JG. et al. Spectroscopic confirmation of a galaxy at redshift z = 8.6. Nature 467, 940–942 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing