Abstract

Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here we develop a single-genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in faecal samples from wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed and almost always made up of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas comprised parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla origin and not of chimpanzee, bonobo or ancient human origin.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

References

  1. 1.

    , , & Malaria. Lancet 365, 1487–1498 (2005)

  2. 2.

    , , , & The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214–217 (2005)

  3. 3.

    & Evolutionary and historical aspects of the burden of malaria. Clin. Microbiol. Rev. 15, 564–594 (2002)

  4. 4.

    , , & That was then but this is now; malaria research in the time of an eradication agenda. Science 328, 862–866 (2010)

  5. 5.

    & Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc. Natl Acad. Sci. USA 91, 11373–11377 (1994)

  6. 6.

    , & Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein gene. Mol. Biol. Evol. 12, 616–626 (1995)

  7. 7.

    et al. Genome variation and evolution of the malaria parasite Plasmodium falciparum. Nature Genet. 39, 120–125 (2006)

  8. 8.

    , , & Malaria’s Eve: evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 95, 4425–4430 (1998)

  9. 9.

    et al. The origin of malignant malaria. Proc. Natl Acad. Sci. USA 106, 14902–14907 (2009)

  10. 10.

    et al. African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum. Proc. Natl Acad. Sci. USA 107, 1458–1463 (2010)

  11. 11.

    et al. On the diversity of malaria parasites in African apes and the origin of Plasmodium falciparum from bonobos. PLoS Pathogens 6, e1000765 (2010)

  12. 12.

    et al. African apes as reservoirs of Plasmodium falciparum and the origin and diversification of the Laverania subgenus. Proc. Natl Acad. Sci. USA 107, 10561–10566 (2010)

  13. 13.

    et al. Molecular ecology and natural history of simian foamy virus infection in wild-living chimpanzees. PLoS Pathogens 4, e1000097 (2008)

  14. 14.

    et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 313, 523–526 (2006)

  15. 15.

    et al. Molecular epidemiology of simian immunodeficiency virus infection in wild-living gorillas. J. Virol. 84, 1464–1476 (2010)

  16. 16.

    et al. Genetic diversity and phylogeographic clustering of SIVcpzPtt in wild chimpanzees in Cameroon. Virology 368, 155–171 (2007)

  17. 17.

    et al. Quantitative detection of Plasmodium falciparum DNA in saliva, blood, and urine. J. Infect. Dis. 199, 1567–1574 (2009)

  18. 18.

    Studies on malaria in chimpanzees. VI. Laverania falciparum. Am. J. Trop. Med. Hyg. 7, 20–24 (1958)

  19. 19.

    et al. Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. J. Virol. 64, 864–872 (1990)

  20. 20.

    et al. Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. J. Clin. Microbiol. 43, 406–413 (2005)

  21. 21.

    et al. Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing. J. Virol. 82, 3952–3970 (2008)

  22. 22.

    et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl Acad. Sci. USA 105, 7552–7557 (2008)

  23. 23.

    et al. Low dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1. J. Exp. Med. 206, 1117–1134 (2009)

  24. 24.

    , & The “Malaria’s Eve” hypothesis and the debate concerning the origin of the human malaria parasite Plasmodium falciparum. Microbes Infect. 5, 891–896 (2003)

  25. 25.

    The clay feet of the malaria giant and its African roots: hypotheses and inferences about origin, spread and control of Plasmodium falciparum. Parassitologia 41, 277–283 (1999)

  26. 26.

    , , , & Evolution of human-chimpanzee differences in malaria susceptibility: relationship to human genetic loss of N-glycolylneuraminic acid. Proc. Natl Acad. Sci. USA 102, 12819–12824 (2005)

  27. 27.

    et al. A new malaria agent in African hominids. PLoS Pathogens 5, e1000446 (2009)

  28. 28.

    et al. Chimpanzee malaria parasite related to Plasmodium ovale in Africa. PLoS ONE 4, e5520 (2009)

  29. 29.

    & MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003)

  30. 30.

    , , & Estimating maximum likelihood phylogenies with PhyML. Methods Mol. Biol. 537, 113–137 (2009)

  31. 31.

    et al. in Proc. 17th Conf. Retroviruses Opportunistic Infections abstr. 440, 〈〉 (2010)

  32. 32.

    et al. Evaluation of the intra- and inter-specific genetic variability of Plasmodium lactate dehydrogenase. Malar. J. 6, 140 (2007)

  33. 33.

    et al. Comparative structural analysis and kinetic properties of lactate dehydrogenases from the four species of human malarial parasites. Biochemistry 43, 6219–6229 (2004)

  34. 34.

    et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007)

  35. 35.

    & Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793–808 (2004)

  36. 36.

    & An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008)

  37. 37.

    Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985)

Download references

Acknowledgements

We thank C. Neel, S. Loul, A. Mebanga, B. Yangda and F. Liegeois for field work in Cameroon; the Cameroonian Ministries of Health, Forestry and Wildlife, and Research for permission to collect samples in Cameroon; the Water and Forest Ministry for permission to collect samples in the Central African Republic; the Ministries of Science and Technology and Forest Economy for permission to collect samples in the Republic of the Congo; the Ministry of Scientific Research and Technology and the Department of Ecology and Management of Plant and Animal Resources of the University of Kisangani for permission to collect samples in the Democratic Republic of the Congo; M. Ndunda, S. Coxe, A. Lokasola, A. Todd and the staff of the World Wildlife Fund in the Central African Republic for logistical support; R. Carter for helpful discussions; M. Salazar, Y. Chen and B. Cochran for technical assistance; and J. White for artwork and manuscript preparation. This work was supported by grants from the National Institutes of Health (R01 AI50529, R01 AI58715, U19 AI 067854, R03 AI074778, T32 GM008111, T32 AI007245, P30 AI 27767), the Bill & Melinda Gates Foundation (37874), the National Science Foundation (0755823), the Agence Nationale de Recherche sur le Sida (12152/12182), the Great Ape Conservation Fund of the US Fish and Wildlife Service, the Arthur L. Greene Fund, the Wallace Global Fund, the Bristol Myers Freedom to Discover Program and the Wellcome Trust. R.S.R. was supported by a Howard Hughes Medical Institute Med-into-Grad Fellowship.

Author information

Author notes

    • Brandon F. Keele

    Present address: The AIDS and Cancer Virus Program, Science Applications International Corporation-Frederick Inc., National Cancer Institute-Frederick, Frederick, Maryland 21702, USA.

Affiliations

  1. Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA

    • Weimin Liu
    • , Yingying Li
    • , Gerald H. Learn
    • , Joel D. Robertson
    • , Brandon F. Keele
    • , George M. Shaw
    • , Julian C. Rayner
    •  & Beatrice H. Hahn
  2. Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA

    • Rebecca S. Rudicell
    • , George M. Shaw
    •  & Beatrice H. Hahn
  3. Department of Ecology and Management of Plant and Animal Resources, Faculty of Sciences, University of Kisangani, Kisangani, BP 2012, Democratic Republic of the Congo

    • Jean-Bosco N. Ndjango
  4. Department of Anthropology, Washington University, Saint Louis, Missouri 63130, USA

    • Crickette M. Sanz
  5. Congo Program, Wildlife Conservation Society, Brazzaville, BP 14537, Republic of the Congo

    • Crickette M. Sanz
    •  & David B. Morgan
  6. Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Illinois 60614, USA

    • David B. Morgan
  7. Department of Biological Sciences, University at Albany, State University of New York, Albany, New York 12222, USA

    • Sabrina Locatelli
    •  & Mary K. Gonder
  8. Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA

    • Philip J. Kranzusch
  9. VaccinApe, Bethesda, Maryland 200816, USA

    • Peter D. Walsh
  10. Institut de Recherche pour le Développement and University of Montpellier 1, 34394 Montpellier, France

    • Eric Delaporte
    •  & Martine Peeters
  11. Institut de Recherches Médicales et d’Etudes des Plantes Médicinales Prévention du Sida au Cameroun, Centre de Recherche Médicale, BP 906, Yaoundé, République du Cameroun

    • Eitel Mpoudi-Ngole
  12. Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA

    • Alexander V. Georgiev
  13. Department of Anthropology, University of New Mexico, Albuquerque, New Mexico 87131, USA

    • Martin N. Muller
  14. Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, UK

    • Paul M. Sharp
  15. Sanger Institute Malaria Programme, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK

    • Julian C. Rayner

Authors

  1. Search for Weimin Liu in:

  2. Search for Yingying Li in:

  3. Search for Gerald H. Learn in:

  4. Search for Rebecca S. Rudicell in:

  5. Search for Joel D. Robertson in:

  6. Search for Brandon F. Keele in:

  7. Search for Jean-Bosco N. Ndjango in:

  8. Search for Crickette M. Sanz in:

  9. Search for David B. Morgan in:

  10. Search for Sabrina Locatelli in:

  11. Search for Mary K. Gonder in:

  12. Search for Philip J. Kranzusch in:

  13. Search for Peter D. Walsh in:

  14. Search for Eric Delaporte in:

  15. Search for Eitel Mpoudi-Ngole in:

  16. Search for Alexander V. Georgiev in:

  17. Search for Martin N. Muller in:

  18. Search for George M. Shaw in:

  19. Search for Martine Peeters in:

  20. Search for Paul M. Sharp in:

  21. Search for Julian C. Rayner in:

  22. Search for Beatrice H. Hahn in:

Contributions

All authors contributed to the acquisition, analysis and interpretation of the data; W.L., M.P., J.C.R., P.M.S. and B.H.H. initiated and designed the study; W.L., Y.L. and J.D.R. performed non-invasive Plasmodium testing and SGA analyses; B.F.K, R.S.R and J.D.R. performed microsatellite analyses; P.M.S. calculated Plasmodium prevalence rates; G.H.L. and P.M.S performed phylogenetic analyses; J.-B.N.N., C.M.S., D.B.M., S.L., M.K.G., P.J.K., P.D.W., E.D., E.M.-N., A.V.G. and M.N.M. conducted and supervised all fieldwork; and W.L., G.M.S., M.P., P.M.S., J.C.R. and B.H.H. coordinated the contributions of all authors and wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Beatrice H. Hahn.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Figures 1-8 with legends and Supplementary Tables 1-7.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature09442

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.