Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Continental warming preceding the Palaeocene–Eocene thermal maximum

Abstract

Marine and continental records1 show an abrupt negative shift in carbon isotope values at 55.8 Myr ago. This carbon isotope excursion (CIE) is consistent with the release of a massive amount of isotopically light carbon into the atmosphere and was associated with a dramatic rise in global temperatures termed the Palaeocene–Eocene thermal maximum (PETM). Greenhouse gases released during the CIE, probably including methane, have often been considered the main cause of PETM warming. However, some evidence from the marine record suggests that warming directly preceded the CIE2,3,4, raising the possibility that the CIE and PETM may have been linked to earlier warming with different origins. Yet pre-CIE warming is still uncertain. Disentangling the sequence of events before and during the CIE and PETM is important for understanding the causes of, and Earth system responses to, abrupt climate change. Here we show that continental warming of about 5 °C preceded the CIE in the Bighorn Basin, Wyoming. Our evidence, based on oxygen isotopes in mammal teeth (which reflect temperature-sensitive fractionation processes) and other proxies, reveals a marked temperature increase directly below the CIE, and again in the CIE. Pre-CIE warming is also supported by a negative amplification of δ13C values in soil carbonates below the CIE. Our results suggest that at least two sources of warming—the earlier of which is unlikely to have been methane—contributed to the PETM.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Stable carbon and oxygen isotope stratigraphy of Phenacodus third molar tooth enamel.
Figure 2: Expanded views of isotopic records near the CIE.
Figure 3: Relationships used to estimate δ 18 O SF /MAT slopes.

References

  1. 1

    Pagani, M., Caldeira, K., Archer, D. & Zachos, J. C. An ancient carbon mystery. Science 314, 1556–1557 (2006)

    CAS  Article  Google Scholar 

  2. 2

    Sluijs, A. et al. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature 450, 1218–1221 (2007)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Thomas, D. J. et al. Warming the fuel for the fire: evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum. Geology 30, 1067–1070 (2002)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Tripati, A. & Elderfield, H. Deep-sea temperature and circulation changes at the Paleocene-Eocene Thermal Maximum. Science 308, 1894–1898 (2005)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Gingerich, P. D. Environment and evolution through the Paleocene–Eocene thermal maximum. Trends Ecol. Evol. 21, 246–253 (2006)

    Article  Google Scholar 

  6. 6

    Wing, S. L. et al. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science 310, 993–996 (2005)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Panchuk, K., Ridgwell, A. & Kump, L. R. Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: a model-data comparison. Geology 36, 315–318 (2008)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Wing, S. L., Bao, H. M. & Koch, P. L. in Warm Climates in Earth History (eds Huber, B. T., MacLeod, K. & Wing, S. L.) 197–237 (Cambridge University Press, 2000)

    Google Scholar 

  9. 9

    Fricke, H. C., Clyde, W. C., O'Neil, J. R. & Gingerich, P. D. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth Planet. Sci. Lett. 160, 193–208 (1998)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Koch, P. L. et al. in Causes and Consequences of Globally Warm Climates in the Early Paleogene (eds Wing, S. L., Gingerich, P. D., Schmitz, B. & Thomas, E.) 369, 49–64 (Geological Society of America Special Paper, 2003)

    Google Scholar 

  11. 11

    Balasse, M., Smith, A. B., Ambrose, S. H. & Leigh, S. R. Determining sheep birth seasonality by analysis of tooth enamel oxygen isotope ratios: the Late Stone Age site of Kasteelberg (South Africa). J. Archaeol. Sci. 30, 205–215 (2003)

    Article  Google Scholar 

  12. 12

    Kohn, M. J. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochim. Cosmochim. Acta 60, 4811–4829 (1996)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Bryant, J. D. & Froelich, P. N. A model of oxygen isotope fractionation in body water of large mammals. Geochim. Cosmochim. Acta 59, 4523–4537 (1995)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Koch, P. L., Zachos, J. C. & Dettman, D. L. Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA). Palaeogeogr. Palaeoclimatol. Palaeoecol. 115, 61–89 (1995)

    Article  Google Scholar 

  15. 15

    Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999)

    ADS  Article  Google Scholar 

  16. 16

    Secord, R., Wing, S. L. & Chew, A. Stable isotopes in early Eocene mammals as indicators of forest canopy structure and resource partitioning. Paleobiology 34, 282–300 (2008)

    Article  Google Scholar 

  17. 17

    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964)

    ADS  Article  Google Scholar 

  18. 18

    Fricke, H. C. & O'Neil, J. R. The correlation between 18O/16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth Planet. Sci. Lett. 170, 181–196 (1999)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Kraus, M. J. & Riggins, S. Transient drying during the Paleocene–Eocene Thermal Maximum (PETM): analysis of paleosols in the Bighorn Basin, Wyoming. Palaeogeogr. Palaeoclimatol. Palaeoecol. 245, 444–461 (2007)

    Article  Google Scholar 

  20. 20

    Levin, N. E. et al. A stable isotope aridity index for terrestrial environments. Proc. Natl Acad. Sci. USA 103, 11201–11205 (2006)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Wilf, P. Late Paleocene-early Eocene climate changes in southwestern Wyoming: paleobotanical analysis. Geol. Soc. Am. Bull. 112, 292–307 (2000)

    ADS  Article  Google Scholar 

  22. 22

    Bowen, G. J. et al. in Paleocene-Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basins, Wyoming (ed. Gingerich, P. D.) 73–88 (Univ. of Michigan Papers on Paleontology 33, 2001)

    Google Scholar 

  23. 23

    Bowen, G. J. et al. A humid climate state during the Palaeocene/Eocene thermal maximum. Nature 432, 495–499 (2004)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Koch, P. L. Isotopic reconstruction of past continental environments. Annu. Rev. Earth Planet. Sci. 26, 573–613 (1998)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Wang, Y. & Cerling, T. E. A model of tooth and bone diagenesis: implications for paleodiet reconstruction from stable isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 281–289 (1994)

    Article  Google Scholar 

  26. 26

    Storey, M., Duncan, R. A. & Swisher, C. C. Paleocene-Eocene Thermal Maximum and the opening of the northeast Atlantic. Science 316, 587–589 (2007)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Svensen, H. et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–545 (2004)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995)

    ADS  Article  Google Scholar 

  29. 29

    Kurtz, A. C. et al. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18 10.1029/2003PA000908 (2003)

    Article  Google Scholar 

  30. 30

    Longinelli, A. & Nuti, S. Revised phosphate-water isotopic temperature scale. Earth Planet. Sci. Lett. 19, 373–376 (1973)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Secord, R. et al. Geochronology and mammalian biostratigraphy of middle and upper Paleocene continental strata, Bighorn Basin, Wyoming. Am. J. Sci. 306, 211–245 (2006)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank D. C. Fisher, G. F. Gunnell, G. R. Smith, L. Wingate, D. L. Dettman, W. J. Sanders, D. L. Fox, P. L. Koch, R. E. Blake, H. C. Fricke, G. J. Bowen, J. I. Bloch, F. A. Smith-McInerney, B. H. Wilkinson, T. Huston, R. Lange and Y. Zhang for their help and advice; S. L. Wing, A. Rountrey, and A. R. Wood for manuscript comments; I. S. Zalmout, D. M. Boyer, and P. Rose for field support. This work was supported by grants from the American Chemical Society (to P.D.G.), the National Science Foundation (to P.D.G.), the Geological Society of America (to R.S.), and the University of Michigan Department of Geological Sciences (to R.S.).

Author information

Affiliations

Authors

Contributions

R.S. sampled and pretreated enamel and ganoine, developed modified techniques for precipitation of Ag3PO4 with K.G.M., did most of the analytical work, and wrote most of this paper. P.D.G. provided specimens, primary stratigraphic data, guidance, and field support. K.G.M. and K.C.L. provided laboratory support and assistance interpreting results. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ross Secord.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Tables 1-3, Supplementary Methods and additional references. (PDF 269 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Secord, R., Gingerich, P., Lohmann, K. et al. Continental warming preceding the Palaeocene–Eocene thermal maximum. Nature 467, 955–958 (2010). https://doi.org/10.1038/nature09441

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing