Functional connectivity in the retina at the resolution of photoreceptors

Article metrics



To understand a neural circuit requires knowledge of its connectivity. Here we report measurements of functional connectivity between the input and ouput layers of the macaque retina at single-cell resolution and the implications of these for colour vision. Multi-electrode technology was used to record simultaneously from complete populations of the retinal ganglion cell types (midget, parasol and small bistratified) that transmit high-resolution visual signals to the brain. Fine-grained visual stimulation was used to identify the location, type and strength of the functional input of each cone photoreceptor to each ganglion cell. The populations of ON and OFF midget and parasol cells each sampled the complete population of long- and middle-wavelength-sensitive cones. However, only OFF midget cells frequently received strong input from short-wavelength-sensitive cones. ON and OFF midget cells showed a small non-random tendency to selectively sample from either long- or middle-wavelength-sensitive cones to a degree not explained by clumping in the cone mosaic. These measurements reveal computations in a neural circuit at the elementary resolution of individual neurons.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Cell-type classification and receptive fields at single-cone resolution.
Figure 2: Cone-type identification and inputs to RGCs.
Figure 3: Full functional sampling of cone lattice by four RGC types.
Figure 4: Cone-type specificity.


  1. 1

    Derrington, A. M., Krauskopf, J. & Lennie, P. Chromatic mechanisms in lateral geniculate nucleus of macaque. J. Physiol. (Lond.) 357, 241–265 (1984)

  2. 2

    Martin, P. R., Lee, B. B., White, A. J., Solomon, S. G. & Ruttiger, L. Chromatic sensitivity of ganglion cells in the peripheral primate retina. Nature 410, 933–936 (2001)

  3. 3

    Reid, R. C. & Shapley, R. M. Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. J. Neurosci. 22, 6158–6175 (2002)

  4. 4

    Chatterjee, S. & Callaway, E. M. S cone contributions to the magnocellular visual pathway in macaque monkey. Neuron 35, 1135–1146 (2002)

  5. 5

    Dacey, D. M. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 281–301 (MIT Press, 2004)

  6. 6

    Sun, H., Smithson, H. E., Zaidi, Q. & Lee, B. B. Specificity of cone inputs to macaque retinal ganglion cells. J. Neurophysiol. 95, 837–849 (2006)

  7. 7

    Buzas, P., Blessing, E. M., Szmajda, B. A. & Martin, P. R. Specificity of M and L cone inputs to receptive fields in the parvocellular pathway: random wiring with functional bias. J. Neurosci. 26, 11148–11161 (2006)

  8. 8

    Wiesel, T. N. & Hubel, D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29, 1115–1156 (1966)

  9. 9

    Jacobs, G. H. & De Valois, R. L. Chromatic opponent cells in squirrel monkey lateral geniculate nucleus. Nature 206, 487–489 (1965)

  10. 10

    Chichilnisky, E. J. & Baylor, D. A. Receptive-field microstructure of blue-yellow ganglion cells in primate retina. Nature Neurosci. 2, 889–893 (1999)

  11. 11

    Litke, A. M. et al. What does the eye tell the brain? Development of a system for the large scale recording of retinal output activity. IEEE Trans. Nucl. Sci. 51, 1434–1440 (2004)

  12. 12

    Frechette, E. S. et al. Fidelity of the ensemble code for visual motion in primate retina. J. Neurophysiol. 94, 119–135 (2005)

  13. 13

    Devries, S. H. & Baylor, D. A. Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J. Neurophysiol. 78, 2048–2060 (1997)

  14. 14

    Chichilnisky, E. J. & Kalmar, R. S. Functional asymmetries in ON and OFF ganglion cells of primate retina. J. Neurosci. 22, 2737–2747 (2002)

  15. 15

    Field, G. D. et al. Spatial properties and functional organization of small bistratified ganglion cells in primate retina. J. Neurosci. 27, 13261–13272 (2007)

  16. 16

    Wässle, H., Peichl, L. & Boycott, B. B. Dendritic territories of cat retinal ganglion cells. Nature 292, 344–345 (1981)

  17. 17

    Dacey, D. M. The mosaic of midget ganglion cells in the human retina. J. Neurosci. 13, 5334–5355 (1993)

  18. 18

    Rodieck, R. W. The First Steps in Seeing (Sinauer, 1998)

  19. 19

    Sincich, L. C., Zhang, Y., Tiruveedhula, P., Horton, J. C. & Roorda, A. Resolving single cone inputs to visual receptive fields. Nature Neurosci. 12, 967–969 (2009)

  20. 20

    Baylor, D. A., Nunn, B. J. & Schnapf, J. L. Spectral sensitivity of cones of the monkey Macaca fascicularis. J. Physiol. (Lond.) 390, 145–160 (1987)

  21. 21

    Roorda, A. & Williams, D. R. The arrangement of the three cone classes in the living human eye. Nature 397, 520–522 (1999)

  22. 22

    Lee, B. B., Martin, P. R. & Valberg, A. The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. J. Physiol. (Lond.) 404, 323–347 (1988)

  23. 23

    Kaiser, P. K., Lee, B. B., Martin, P. R. & Valberg, A. The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina. J. Physiol. (Lond.) 422, 153–183 (1990)

  24. 24

    Lee, B. B., Pokorny, J., Smith, V. C. & Kremers, J. Responses to pulses and sinusoids in macaque ganglion cells. Vision Res. 34, 3081–3096 (1994)

  25. 25

    Klug, K., Herr, S., Ngo, I. T., Sterling, P. & Schein, S. Macaque retina contains an S-cone OFF midget pathway. J. Neurosci. 23, 9881–9887 (2003)

  26. 26

    Tailby, C., Szmajda, B. A., Buzas, P., Lee, B. B. & Martin, P. R. Transmission of blue (S) cone signals through the primate lateral geniculate nucleus. J. Physiol. (Lond.) 586, 5947–5967 (2008)

  27. 27

    Lee, S. C. & Grunert, U. Connections of diffuse bipolar cells in primate retina are biased against S-cones. J. Comp. Neurol. 502, 126–140 (2007)

  28. 28

    Solomon, S. G., Lee, B. B., White, A. J., Ruttiger, L. & Martin, P. R. Chromatic organization of ganglion cell receptive fields in the peripheral retina. J. Neurosci. 25, 4527–4539 (2005)

  29. 29

    De Valois, R. L., Abramov, I. & Jacobs, G. H. Analysis of response patterns of LGN cells. J. Opt. Soc. Am. 56, 966–977 (1966)

  30. 30

    de Monasterio, F. M., Gouras, P. & Tolhurst, D. J. Trichromatic colour opponency in ganglion cells of the rhesus monkey retina. J. Physiol. (Lond.) 251, 197–216 (1975)

  31. 31

    Lee, B. B. Receptive field structure in the primate retina. Vision Res. 36, 631–644 (1996)

  32. 32

    Dacey, D. M. Parallel pathways for spectral coding in primate retina. Annu. Rev. Neurosci. 23, 743–775 (2000)

  33. 33

    Gegenfurtner, K. R. Cortical mechanisms of colour vision. Nature Rev. Neurosci. 4, 563–572 (2003)

  34. 34

    Solomon, S. G. & Lennie, P. The machinery of colour vision. Nature Rev. Neurosci. 8, 276–286 (2007)

  35. 35

    Calkins, D. J., Schein, S. J., Tsukamoto, Y. & Sterling, P. M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature 371, 70–72 (1994)

  36. 36

    Jusuf, P. R., Martin, P. R. & Grunert, U. Random wiring in the midget pathway of primate retina. J. Neurosci. 26, 3908–3917 (2006)

  37. 37

    Ghosh, K. K., Goodchild, A. K., Sefton, A. E. & Martin, P. R. Morphology of retinal ganglion cells in a new world monkey, the marmoset Callithrix jacchus. J. Comp. Neurol. 366, 76–92 (1996)

  38. 38

    Lennie, P., Haake, W. & Williams, D. R. in Computational Models of Visual Processing (eds Landy, M. & Movshon, J. A.) 71–82 (MIT Press, 1991)

  39. 39

    Reid, R. C. & Shapley, R. M. Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus. Nature 356, 716–718 (1992)

  40. 40

    Diller, L. et al. L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina. J. Neurosci. 24, 1079–1088 (2004)

  41. 41

    Hofer, H., Carroll, J., Neitz, J., Neitz, M. & Williams, D. R. Organization of the human trichromatic cone mosaic. J. Neurosci. 25, 9669–9679 (2005)

  42. 42

    Packer, O. S., Williams, D. R. & Bensinger, D. G. Photopigment transmittance imaging of the primate photoreceptor mosaic. J. Neurosci. 16, 2251–2260 (1996)

  43. 43

    Nathans, J. The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron 24, 299–312 (1999)

  44. 44

    Calkins, D. J. & Sterling, P. Evidence that circuits for spatial and color vision segregate at the first retinal synapse. Neuron 24, 313–321 (1999)

  45. 45

    Kouyama, N. & Marshak, D. W. Bipolar cells specific for blue cones in the macaque retina. J. Neurosci. 12, 1233–1252 (1992)

  46. 46

    Dacey, D. M. & Lee, B. B. The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731–735 (1994)

  47. 47

    Wassle, H., Grunert, U., Martin, P. R. & Boycott, B. B. Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina. Vision Res. 34, 561–579 (1994)

  48. 48

    Wachtler, T., Doi, E., Lee, T. & Sejnowski, T. J. Cone selectivity derived from the responses of the retinal cone mosaic to natural scenes. J. Vis. 7 10.1167/7.8.6 (2007)

  49. 49

    Hosoya, T., Baccus, S. A. & Meister, M. Dynamic predictive coding by the retina. Nature 436, 71–77 (2005)

  50. 50

    Neitz, J., Carroll, J., Yamauchi, Y., Neitz, M. & Williams, D. R. Color perception is mediated by a plastic neural mechanism that is adjustable in adults. Neuron 35, 783–792 (2002)

  51. 51

    Diggle, P. J. Statistical Analysis of Spatial Point Patterns (Academic, 1983)

Download references


This work was supported by the Helen Hay Whitney Foundation (G.D.F.), German Research Foundation (M.G.), National Institutes of Health (NIH) National Research Service Award (NS054519-01) and Chapman Foundation (J.L.G.), Miller Institute for Basic Research in Science (J.S.), Polish Ministry of Science and Higher Education (W.D.), Burroughs Wellcome Fund Career Award at Scientific Interface (A.S.), Engineering and Physical Sciences Research Council (D.E.G.), Royal Society of Edinburgh (K.M.), McKnight Foundation (A.M.L. and E.J.C.), NSF Grant PHY-0750525 (A.M.L.), a Sloan Research Fellowship and NIH Grant EY13150 (E.J.C). We thank C. K. Hulse for technical assistance; M. I. Grivich, D. Petrusca, A. Grillo, P. Grybos, P. Hottowy and S. Kachiguine for technical development; H. Fox, M. Taffe, E. Callaway and K. Osborn for providing access to retinas; S. Barry for machining; F. Rieke and T. Sejnowski for providing comments on the manuscript. We thank the San Diego Supercomputer Center and the National Science Foundation (Cooperative Agreements 05253071 and 0438741) for large-scale data storage.

Author information

G.D.F., J.L.G., A.S. and E.J.C. conceived the experiments. G.D.F., J.L.G., A.S., M.G., J.S., L.H.J. and E.J.C. performed the electrophysiological experiments. G.D.F., J.L.G., A.S., M.G., T.A.M., E.J.C. and L.P. analysed the data. A.S., D.E.G., K.M., W.D. and A.M.L. provided and supported the large-scale multielectrode array system. G.D.F. and E.J.C. wrote the manuscript.

Correspondence to E. J. Chichilnisky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures 5-7 with legends, a Supplementary Discussion and additional references. (PDF 745 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.