Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Melting above the anhydrous solidus controls the location of volcanic arcs

Abstract

Segregation of magma from the mantle in subduction zones is one of the principal mechanisms for chemical differentiation of the Earth. Fundamental aspects of this system, in particular the processes by which melt forms and travels to the Earth’s surface, remain obscure. Systematics in the location of volcanic arcs, the surface expression of this melting, are widely considered to be a clue to processes taking place at depth, but many mutually incompatible interpretations of this clue exist (for example, see refs 1–6). We discriminate between those interpretations by the use of a simple scaling argument derived from a realistic mathematical model of heat transfer in subduction zones. The locations of the arcs cannot be explained by the release of fluids in reactions taking place near the top of the slab. Instead, the sharpness of the volcanic fronts, together with the systematics of their locations, requires that arcs must be located above the place where the boundary defined by the anhydrous solidus makes its closest approach to the trench. We show that heat carried by magma rising from this region is sufficient to modify the thermal structure of the wedge and determine the pathway through which both wet and dry melts reach the surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Idealized cross-sections of a subduction zone, drawn perpendicular to the trench and the island arc.
Figure 2: Scaling relations for temperatures in the core of the mantle wedge, and at the top of the slab.
Figure 3: Systematic variation in depth to the slab beneath volcanic arcs, and its relation to pressure–temperature conditions beneath the arcs.
Figure 4: A sketch of the process that determines the position of volcanoes.

Similar content being viewed by others

References

  1. Gill, J. Orogenic Andesites and Plate Tectonics (Springer, 1981)

    Book  Google Scholar 

  2. Kushiro, I. in Magmatic Processes: Physicochemical Principles (ed. Mysen, B.) Vol. 1, 165–181 (Geochemical Society Special Publication, 1987)

    Google Scholar 

  3. Tatsumi, Y. & Eggins, S. Subduction Zone Magmatism (Blackwell Science, 1995)

    Google Scholar 

  4. Schmidt, M. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Tatsumi, Y. The subduction factory: how it operates in the evolving Earth. GSA Today 15, 4–10 (2005)

    Article  Google Scholar 

  6. Grove, T. L., Till, C. B., Lev, E., Chatterjee, N. & Médard, E. Kinematic variables and water transport control the formation and location of arc volcanoes. Nature 459, 694–697 (2009)

    Article  ADS  CAS  Google Scholar 

  7. Tovish, A. & Schubert, G. Island arc curvature, velocity of convergence and angle of subduction. Geophys. Res. Lett. 5, 329–332 (1978)

    Article  ADS  Google Scholar 

  8. England, P. C., Engdahl, E. R. & Thatcher, W. Systematic variation in the depths of slabs beneath arc volcanoes. Geophys. J. Int. 156, 377–408 (2004)

    Article  ADS  Google Scholar 

  9. Ulmer, P. & Trommsdorff, V. Serpentine stability to mantle depths and subduction-related magmatism. Science 268, 858–861 (1995)

    Article  ADS  CAS  Google Scholar 

  10. van Keken, P. et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Inter. 171, 187–197 (2008)

    Article  ADS  Google Scholar 

  11. England, P. & Wilkins, C. A simple analytical approximation to the temperature structure in subduction zones. Geophys. J. Int. 159, 1138–1154 (2004)

    Article  ADS  Google Scholar 

  12. Engdahl, E., van der Hilst, R. & Buland, R. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am. 88, 722–743 (1998)

    Google Scholar 

  13. Syracuse, E. M. & Abers, G. A. Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem. Geophys. Geosyst. 7 (5), Q05017 10.1029/2005GC001045 (2006)

    Article  ADS  Google Scholar 

  14. England, P. C. & Katz, R. F. Global systematics of arc volcano position. Nature 10.1038/nature09154 (in the press)

  15. Katz, R., Spiegelman, M. & Langmuir, C. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4 (9), 1073 10.1029/2002GC000433 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Kelley, K. A. et al. Mantle melting as a function of water content beneath back-arc basins. J. Geophys. Res. 111 B09208 10.1029/2005JB003732 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Baker, M., Grove, T. & Price, R. Primitive basalts and andesites from the Mt. Shasta region, N. California—products of varying melt fraction and water content. Contrib. Mineral. Petrol. 118, 111–129 (1994)

    Article  ADS  CAS  Google Scholar 

  18. Sisson, T. & Bronto, S. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia. Nature 391, 883–886 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Elkins-Tanton, L., Grove, T. & Donnelly-Nolan, J. Hot, shallow mantle melting under the Cascades volcanic arc. Geology 29, 631–634 (2001)

    Article  ADS  Google Scholar 

  20. Cameron, B. et al. Flux versus decompression melting at stratovolcanoes in southeastern Guatemala. J. Volcanol. Geotherm. Res. 119, 21–50 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Tatsumi, Y. & Suzuki, T. Tholeiitic vs calc-alkalic differentiation and evolution of arc crust: constraints from melting experiments on a basalt from the Izu-Bonin-Mariana arc. J. Petrol. 50, 1575–1603 (2009)

    Article  ADS  CAS  Google Scholar 

  22. Conder, J., Wiens, D. & Morris, J. On the decompression melting structure at volcanic arcs and back-arc spreading centers. Geophys. Res. Lett. 29 1727 10.1029/2002GL015390 (2002)

    Article  ADS  Google Scholar 

  23. Cagnioncle, A.-M., Parmentier, E. M. & Elkins-Tanton, L. T. Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries. J. Geophys. Res. 112 B09402 10.1029/2007JB004934 (2007)

    Article  ADS  CAS  Google Scholar 

  24. Sparks, D. & Parmentier, E. Melt extraction from the mantle beneath spreading centers. Earth Planet. Sci. Lett. 105, 368–377 (1991)

    Article  ADS  Google Scholar 

  25. Spiegelman, M. Physics of melt extraction: theory, implications, and applications. Phil. Trans. R. Soc. Lond. A 342, 23–41 (1993)

    Article  ADS  Google Scholar 

  26. Hirschmann, M. M., Asimow, P. D., Ghiorso, M. S. & Stolper, E. M. Calculation of peridotite partial melting from thermodynamic models of minerals and melts. III. Controls on isobaric melt production and the effect of water on melt production. J. Petrol. 40, 831–851 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Crisp, J. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20, 177–211 (1984)

    Article  ADS  Google Scholar 

  28. Reymer, A. & Schubert, G. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 3, 63–77 (1984)

    Article  ADS  Google Scholar 

  29. Dimalanta, C., Taira, A., Yumul, G., Tokuyama, H. & Mochizuki, K. New rates of western Pacific island arc magmatism from seismic and gravity data. Earth Planet. Sci. Lett. 202, 105–115 (2002)

    Article  ADS  CAS  Google Scholar 

  30. White, S., Crisp, J. & Spera, F. Long-term volumetric eruption rates and magma budgets. Geochem. Geophys. Geosyst. 7, Q03010 (2006)

    ADS  Google Scholar 

  31. Katz, R. Magma dynamics with the enthalpy method: benchmark solutions and magmatic focusing at mid-ocean ridges. J. Petrol. 49 10.1093/petrology/egn058 (2008)

    Article  ADS  CAS  Google Scholar 

  32. Knepley, M., Katz, R. & Smith, B. in Numerical Solution of Partial Differential Equations on Parallel Computers Vol. 51 Lecture Notes in Computational Science and Engineering (eds Bruaset, A. & Tveito, A.) 413–438 (Springer, 2006)

    Book  Google Scholar 

  33. Balay, S. et al. Portable, Extensible Toolkit for Scientific Computation (PETSc); 〈http://www.mcs.anl.gov/petsc〉 (2001)

    Google Scholar 

  34. Katz, R., Knepley, M., Smith, B., Spiegelman, M. & Coon, E. Numerical simulation of geodynamic processes with the Portable Extensible Toolkit for Scientific Computation. Phys. Earth Planet. Inter. 163, 52–68 (2007)

    Article  ADS  Google Scholar 

  35. Karato, S. & Wu, P. Rheology of the upper mantle—a synthesis. Science 260, 771–778 (1993)

    Article  ADS  CAS  Google Scholar 

  36. Hirth, G. & Kohlstedt, D. in Inside the Subduction Factory (ed. Eiler, J.) Vol. 138, 83–105 (AGU Geophysical Monograph, American Geophysical Union, 2003)

    Book  Google Scholar 

  37. Conder, J. A case for hot slab surface temperatures in numerical viscous flow models of subduction zones with an improved fault zone parameterization. Phys. Earth Planet. Inter. 149, 155–164 (2005)

    Article  ADS  Google Scholar 

  38. Tichelaar, B. W. & Ruff, L. Depth of seismic coupling along subduction zones. J. Geophys. Res. 98, 2107–2037 (1993)

    Google Scholar 

Download references

Acknowledgements

We are grateful to T. Grove and E. Lev for their free exchange of ideas and data concerning their paper (ref. 6), and to C. Langmuir for comments that helped us to improve the manuscript. We thank E. Syracuse for providing hypocentral locations. Numerical models were run on computational clusters at the Oxford Supercomputing Centre.

Author information

Authors and Affiliations

Authors

Contributions

R.F.K. wrote the code for the numerical experiments; P.C.E. carried out the re-analysis of depth-to-slab (Fig. 3 and Supplementary Information). Both authors participated equally in developing the ideas presented in this paper and in writing it.

Corresponding author

Correspondence to Philip C. England.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Information comprising a) Depth to the top of the slab beneath volcanic arcs and b) Thermal Calculations, Supplementary Figures 1- 4 with legends, Supplementary Table 1 and additional references. (PDF 478 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

England, P., Katz, R. Melting above the anhydrous solidus controls the location of volcanic arcs. Nature 467, 700–703 (2010). https://doi.org/10.1038/nature09417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09417

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing