Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure of a cation-bound multidrug and toxic compound extrusion transporter


Transporter proteins from the MATE (multidrug and toxic compound extrusion)1 family are vital in metabolite transport in plants2,3, directly affecting crop yields worldwide4. MATE transporters also mediate multiple-drug resistance (MDR) in bacteria and mammals5, modulating the efficacy of many pharmaceutical drugs used in the treatment of a variety of diseases6,7,8,9. MATE transporters couple substrate transport to electrochemical gradients and are the only remaining class of MDR transporters whose structure has not been determined10. Here we report the X-ray structure of the MATE transporter NorM from Vibrio cholerae determined to 3.65 Å, revealing an outward-facing conformation with two portals open to the outer leaflet of the membrane and a unique topology of the predicted 12 transmembrane helices distinct from any other known MDR transporter. We also report a cation-binding site in close proximity to residues previously deemed critical for transport11. This conformation probably represents a stage of the transport cycle with high affinity for monovalent cations and low affinity for substrates.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: NorM-VC model.
Figure 2: Validation of the NorM-VC model, showing the positions of the 16 mercury-labelled cysteine mutants.
Figure 3: Electrostatic potential surface representation of NorM-VC.
Figure 4: The cation-binding site of NorM-VC and mechanism of transport.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors for the structures reported here are deposited in the Protein Data Bank with accession codes 3MKT and 3MKU.


  1. Brown, M. H., Paulsen, I. T. & Skurray, R. A. The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol. Microbiol. 31, 394–395 (1999)

    CAS  Article  Google Scholar 

  2. Magalhaes, J. V. et al. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genet. 39, 1156–1161 (2007)

    CAS  Article  Google Scholar 

  3. Morita, M. et al. Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum . Proc. Natl Acad. Sci. USA 106, 2447–2452 (2009)

    ADS  CAS  Article  Google Scholar 

  4. Wood, S., Sebastian, K. & Scherr, S. J. Pilot Analysis of Global Ecosystems: Agroecosystems Vol. 12 (World Resources Institute, 2000)

    Google Scholar 

  5. Omote, H., Hiasa, M., Matsumoto, T., Otsuka, M. & Moriyama, Y. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol. Sci. 27, 587–593 (2006)

    CAS  Article  Google Scholar 

  6. Kaatz, G. W., McAleese, F. & Seo, S. M. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob. Agents Chemother. 49, 1857–1864 (2005)

    CAS  Article  Google Scholar 

  7. McAleese, F. et al. A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob. Agents Chemother. 49, 1865–1871 (2005)

    CAS  Article  Google Scholar 

  8. Becker, M. L. et al. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes 58, 745–749 (2009)

    CAS  Article  Google Scholar 

  9. Tsuda, M. et al. Targeted disruption of the multidrug and toxin extrusion 1 (Mate1) gene in mice reduces renal secretion of metformin. Mol. Pharmacol. 75, 1280–1286 (2009)

    CAS  Article  Google Scholar 

  10. Saier, M. H., Jr, Tran, C. V. & Barabote, R. D. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res. 34, D181–D186 (2006)

    CAS  Article  Google Scholar 

  11. Otsuka, M. et al. Identification of essential amino acid residues of the NorM Na+/multidrug antiporter in Vibrio parahaemolyticus . J. Bacteriol. 187, 1552–1558 (2005)

    CAS  Article  Google Scholar 

  12. Hvorup, R. N. et al. The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. Eur. J. Biochem. 270, 799–813 (2003)

    CAS  Article  Google Scholar 

  13. Zhang, Q. H. et al. Designing facial amphiphiles for the stabilization of integral membrane proteins. Angew. Chem. Int. Ed. 46, 7023–7025 (2007)

    CAS  Article  Google Scholar 

  14. Aller, S. G. et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323, 1718–1722 (2009)

    ADS  CAS  Article  Google Scholar 

  15. Chen, Y. J. et al. X-ray structure of EmrE supports dual topology model. Proc. Natl Acad. Sci. USA 104, 18999–19004 (2007)

    ADS  CAS  Article  Google Scholar 

  16. Ward, A., Reyes, C. L., Yu, J., Roth, C. B. & Chang, G. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc. Natl Acad. Sci. USA 104, 19005–19010 (2007)

    ADS  CAS  Article  Google Scholar 

  17. Murakami, S., Nakashima, R., Yamashita, E. & Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002)

    ADS  CAS  Article  Google Scholar 

  18. Yin, Y., He, X., Szewczyk, P., Nguyen, T. & Chang, G. Structure of the multidrug transporter EmrD from Escherichia coli . Science 312, 741–744 (2006)

    ADS  CAS  Article  Google Scholar 

  19. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli . Science 301, 610–615 (2003)

    ADS  CAS  Article  Google Scholar 

  20. Huang, Y. F., Lemieux, M. J., Song, J. M., Auer, M. & Wang, D. N. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli . Science 301, 616–620 (2003)

    ADS  CAS  Article  Google Scholar 

  21. Zheleznova, E. E., Markham, P. N., Neyfakh, A. A. & Brennan, R. G. Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter. Cell 96, 353–362 (1999)

    CAS  Article  Google Scholar 

  22. Watkins, R. E. et al. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 292, 2329–2333 (2001)

    CAS  Article  Google Scholar 

  23. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    CAS  Article  Google Scholar 

  24. Altschul, S. F. et al. Protein database searches using compositionally adjusted substitution matrices. FEBS J. 272, 5101–5109 (2005)

    CAS  Article  Google Scholar 

  25. Jardetzk, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966)

    ADS  Article  Google Scholar 

  26. Law, C. J., Maloney, P. C. & Wang, D. N. Ins and outs of major facilitator superfamily antiporters. Annu. Rev. Microbiol. 62, 289–305 (2008)

    CAS  Article  Google Scholar 

  27. Furey, W. & Swaminathan, S. PHASES-95: a program package for processing and analyzing diffraction data from macromolecules. Methods Enzymol. 277, 590–620 (1997)

    CAS  Article  Google Scholar 

  28. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999)

    CAS  Article  Google Scholar 

  29. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000)

    CAS  Article  Google Scholar 

  30. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998)

    CAS  Article  Google Scholar 

  31. Brunger, A. T. Version 1.2 of the Crystallography and NMR system. Nature Protocols 2, 2728–2733 (2007)

    CAS  Article  Google Scholar 

  32. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    CAS  Article  Google Scholar 

  33. Leslie, A. G. W. Joint CCP4 + ESF-EAMCB. Newsletter on Protein Crystallography no. 26. (1992)

  34. Sack, J. S. Chain—a crystallographic modeling program. J. Mol. Graph. 6, 224–225 (1988)

    Article  Google Scholar 

  35. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004)

    Article  Google Scholar 

  36. DeLano, W. L. The PyMOL Molecular Graphics System (DeLano Scientific, 2002)

    Google Scholar 

  37. Li, X. Z., Poole, K. & Nikaido, H. Contributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes. Antimicrob. Agents Chemother. 47, 27–33 (2003)

    CAS  Article  Google Scholar 

Download references


We thank Y. Yin for his contribution to initial clones of NorM. We also thank the Canadian Light Source (CLS), the Stanford Synchrotron Radiation Laboratory (SSRL), the Advanced Light Source (ALS) and the Advanced Photon Source (APS). This work was supported by grants from the National Institutes of Health (GM70480 to G.C., and GM73197 to Q.Z.), the Beckman Foundation and the Skaggs Chemical Biology Foundation.

Author information

Authors and Affiliations



X.H., P.S., A.K. and G.C. designed the experiments and wrote the manuscript. X.H., P.S., A.K. and R.E. performed experiments. W.H. and Q.Z. did chemical synthesis.

Corresponding author

Correspondence to Geoffrey Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-12 with legends, Supplementary Tables 1- 4 and additional references. (PDF 9841 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

He, X., Szewczyk, P., Karyakin, A. et al. Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 467, 991–994 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing