Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single-atom-resolved fluorescence imaging of an atomic Mott insulator

Abstract

The reliable detection of single quantum particles has revolutionized the field of quantum optics and quantum information processing. For several years, researchers have aspired to extend such detection possibilities to larger-scale, strongly correlated quantum systems1,2 in order to record in situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution on the lattice and identify individual excitations with high fidelity. A comparison of the radial density and variance distributions with theory provides a precise in situ temperature and entropy measurement from single images. We observe Mott-insulating plateaus with near-zero entropy and clearly resolve the high-entropy rings separating them, even though their width is of the order of just a single lattice site. Furthermore, we show how a Mott insulator melts with increasing temperature, owing to a proliferation of local defects. The ability to resolve individual lattice sites directly opens up new avenues for the manipulation, analysis and applications of strongly interacting quantum gases on a lattice. For example, one could introduce local perturbations or access regions of high entropy, a crucial requirement for the implementation of novel cooling schemes3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: High-resolution fluorescence images of a BEC and Mott insulators.
Figure 3: Identification of single atoms in a high-resolution image.
Figure 4: Radial atom density and variance profiles.
Figure 5: Melting of a Mott insulator.

Similar content being viewed by others

References

  1. Jaksch, D. & Zoller, P. The cold atoms Hubbard toolbox. Ann. Phys. 315, 52–79 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

    Article  ADS  CAS  Google Scholar 

  3. Bernier, J.-S. et al. Cooling fermionic atoms in optical lattices by shaping the confinement. Phys. Rev. A 79, 061601(R) (2009)

    Article  ADS  Google Scholar 

  4. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989)

    Article  ADS  CAS  Google Scholar 

  5. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Greiner, M., Mandel, M., Esslinger, T., Hänsch, T. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Spielman, I. B., Phillips, W. D. & Porto, J. V. Mott-insulator transition in a two-dimensional atomic Bose gas. Phys. Rev. Lett. 98, 080404 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Paredes, B. et al. Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Kinoshita, T., Wenger, T. & Weiss, D. S. Observation of a one-dimensional Tonks-Girardeau gas. Science 305, 1125–1128 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Jördens, R., Strohmaier, N., Günter, K., Moritz, H. & Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008)

    Article  ADS  Google Scholar 

  11. Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Gerbier, F., Fölling, S., Widera, A., Mandel, O. & Bloch, I. Probing number squeezing of ultracold atoms across the superfluid-Mott insulator transition. Phys. Rev. Lett. 96, 090401 (2006)

    Article  ADS  Google Scholar 

  13. Raussendorf, R. & Briegel, H. J. A. One-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Nelson, K. D., Li, X. & Weiss, D. S. Imaging single atoms in a three-dimensional array. Nature Phys. 3, 556–560 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Gericke, T., Würtz, P., Reitz, D., Langen, T. & Ott, H. High-resolution scanning electron microscopy of an ultracold quantum gas. Nature Phys. 4, 949–953 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Gemelke, N., Zhang, X., Hung, C.-L. & Chin, C. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases. Nature 460, 995–998 (2009)

    Article  ADS  CAS  Google Scholar 

  17. Karski, M. et al. Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging. Phys. Rev. Lett. 102, 053001 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Bakr, W. S. et al. Probing the superfluid-to-Mott insulator-transition at the single-atom level. Science 329, 547–550 (2010)

    Article  ADS  CAS  Google Scholar 

  20. Gerbier, F. Boson Mott insulators at finite temperatures. Phys. Rev. Lett. 99, 120405 (2007)

    Article  ADS  Google Scholar 

  21. Ho, T.-L. & Zhou, Q. Intrinsic heating and cooling in adiabatic processes for bosons in optical lattices. Phys. Rev. Lett. 99, 120404 (2007)

    Article  ADS  Google Scholar 

  22. DePue, M. T., McCormick, C., Winoto, S. L., Oliver, S. & Weiss, D. S. Unity occupation of sites in a 3D optical lattice. Phys. Rev. Lett. 82, 2262–2265 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Krauth, W. & Trivedi, N. Mott and superfluid transitions in a strongly interacting lattice boson system. Europhys. Lett. 14, 627–632 (1991)

    Article  ADS  CAS  Google Scholar 

  24. Rigol, M., Batrouni, G. G., Rousseau, V. G. & Scalettar, R. T. State diagrams for harmonically trapped bosons in optical lattices. Phys. Rev. A 79, 053605 (2009)

    Article  ADS  Google Scholar 

  25. Fölling, S., Widera, A., Müller, T., Gerbier, F. & Bloch, I. Formation of spatial shell structure in the superfluid to Mott insulator transition. Phys. Rev. Lett. 97, 060403 (2006)

    Article  ADS  Google Scholar 

  26. Campbell, G. K. et al. Imaging the Mott insulator shells by using atomic clock shifts. Science 313, 649–652 (2006)

    Article  ADS  CAS  Google Scholar 

  27. Hung, C.-L., Zhang, X., Gemelke, N. & Chin, C. Slow mass transport and statistical evolution of an atomic gas across the superfluid-Mott-insulator transition. Phys. Rev. Lett. 104, 160403 (2010)

    Article  ADS  Google Scholar 

  28. Capogrosso-Sansone, B., Söyler, S. G., Prokof'ev, N. V. & Svistunov, B. V. Critical entropies for magnetic ordering in bosonic mixtures on a lattice. Phys. Rev. A 81, 053622 (2010)

    Article  ADS  Google Scholar 

  29. Zhang, C., Rolston, S. L. & Das Sarma, S. Manipulation of single neutral atoms in optical lattices. Phys. Rev. A 74, 042316 (2006)

    Article  ADS  Google Scholar 

  30. Hung, C.-L., Zhang, X., Gemelke, N. & Chin, C. Accelerating evaporative cooling of atoms into Bose-Einstein condensation in optical traps. Phys. Rev. A 78, 011604 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Glöckner and R. Labouvie for assistance during the set-up of the experiment and S. Trotzky for discussions. We acknowledge funding by the MPG, the DFG, the Stiftung Rheinland-Pfalz für Innovation, the Carl-Zeiss Stiftung, the EU (NAMEQUAM, AQUTE and Marie Curie fellowships to J.F.S. and M.C.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the construction of the apparatus, acquisition and analysis of the data, and the writing of this manuscript.

Corresponding author

Correspondence to Stefan Kuhr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes 1-3 and Supplementary Figures 1-2 with legends. (PDF 163 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherson, J., Weitenberg, C., Endres, M. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010). https://doi.org/10.1038/nature09378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09378

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing