Production and application of electron vortex beams


Vortex beams (also known as beams with a phase singularity) consist of spiralling wavefronts that give rise to angular momentum around the propagation direction. Vortex photon beams are widely used in applications such as optical tweezers to manipulate micrometre-sized particles and in micro-motors to provide angular momentum1,2, improving channel capacity in optical3 and radio-wave4 information transfer, astrophysics5 and so on6. Very recently, an experimental realization of vortex beams formed of electrons was demonstrated7. Here we describe the creation of vortex electron beams, making use of a versatile holographic reconstruction technique in a transmission electron microscope. This technique is a reproducible method of creating vortex electron beams in a conventional electron microscope. We demonstrate how they may be used in electron energy-loss spectroscopy to detect the magnetic state of materials and describe their properties. Our results show that electron vortex beams hold promise for new applications, in particular for analysing and manipulating nanomaterials, and can be easily produced.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Calculated holographic reconstruction of a wavefunction carrying angular momentum.
Figure 2: Experimental realization of the holographic reconstruction technique.
Figure 3: Experimental proof of the angular momentum in the sidebands.
Figure 4: Application of the vortex beam to EELS.


  1. 1

    He, H., Friese, M. E. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75 (5) 826–829 (1995)

    ADS  Article  Google Scholar 

  2. 2

    O'Neill, A. T., Mac Vicar, I., Allen, L. & Padgett, M. J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88 (5) 053601 (2002)

    ADS  Article  Google Scholar 

  3. 3

    Barreiro, J. T., Wei, T.-C. & Kwiat, P. G. Beating the channel capacity limit for linear photonic superdense coding. Nature Phys. 4, 282–286 (2008)

    CAS  Article  Google Scholar 

  4. 4

    Thidé, B. et al. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys. Rev. Lett. 99, 087701 (2007)

    ADS  Article  Google Scholar 

  5. 5

    Berkhout, G. C. G. & Beijersbergen, M. W. Using a multipoint interferometer to measure the orbital angular momentum of light in astrophysics. J. Opt. A 11, 094021(7) (2009)

    ADS  Article  Google Scholar 

  6. 6

    Franke-Arnold, S., Allen, L. & Padgett, M. Advances in optical angular momentum. Laser Photon Rev. 2, 299–313 (2008)

    ADS  Article  Google Scholar 

  7. 7

    Uchida, M. & Tonomura, A. Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Beth, R. A. Direct detection of the angular momentum of light. Phys. Rev. 48, 471 (1935)

    ADS  Article  Google Scholar 

  9. 9

    Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45 (11) 8185–8189 (1992)

    Article  Google Scholar 

  10. 10

    Cojoc, D. et al. X-ray vortices with high topological charge. Microelectron. Eng. 83, 1360–1363 (2006)

    CAS  Article  Google Scholar 

  11. 11

    Beijersbergen, M. W. & Allen, L. van der Veen, H. E. L. O. & Woerdman, J. P. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 123–132 (1993)

    ADS  Article  Google Scholar 

  12. 12

    Bazhenov, V. Y., Vasnetsov, M. V. & Soskin, M. S. Laser beams with screw dislocations in their wavefronts. JETP Lett. 52 (8). 429–431 (1990)

    Google Scholar 

  13. 13

    Heckenberg, N. R., McDuff, R., Smith, C. P., Rubinszteindunlop, H. & Wegener, M. J. Laser-beams with phase singularities. Opt. Quantum Electron. 24 (9). S951–S962 (1992)

    Article  Google Scholar 

  14. 14

    Nye, J. F. & Berry, M. V. Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165–190 (1974)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15

    Peele, A. G. et al. Observation of an X-ray vortex. Opt. Lett. 27 (20). 1752–1754 (2002)

    ADS  Article  Google Scholar 

  16. 16

    Bliokh, K. Y., Bliokh, Y. P., Savel'ev, S. & Nori, F. Semiclassical dynamics of electron wave packets with phase vortices. Phys. Rev. Lett. 99, 190404 (2007)

    ADS  Article  Google Scholar 

  17. 17

    Schattschneider, P. et al. Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441, 486–488 (2006)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Rubino, S. et al. Energy-loss magnetic chiral dichroism (EMCD): magnetic chiral dichroism in the electron microscope. J. Mater. Res. 23 (10). 2582–2590 (2008)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Schattschneider, P. et al. Real space maps of magnetic moments on the atomic scale: theory and feasibility. Ultramicroscopy 110 (8). 1038–1041 (2010)

    CAS  Article  Google Scholar 

  20. 20

    Findlay, S. D., Schattschneider, P. & Allen, L. J. Imaging using inelastically scattered electrons in CTEM and STEM geometry. Ultramicroscopy 108 (1). 58–67 (2007)

    CAS  Article  Google Scholar 

  21. 21

    Babiker, M., Power, W. L. & Allen, L. Light-induced torque on moving atoms. Phys. Rev. Lett. 73, 1239–1242 (1994)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Garcia de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010)

    ADS  CAS  Article  Google Scholar 

Download references


J.V. acknowledges financial support from the European Union under the Framework 6 programme under a contract for an Integrated Infrastructure Initiative (reference 026019 ESTEEM). H.T. acknowledges the FWO-Vlaanderen for financial support under contract number G.0147.06.

Author information




Author contributions: J.V. developed the idea, designed the apertures, simulated the EELS behaviour, and did first experiments. H.T. did more elaborate experiments and recorded the EELS results. P.S. developed the background of using angular momentum in TEM and EELS and interpreted the results.

Corresponding author

Correspondence to J. Verbeeck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-3 with legends. (PDF 350 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Verbeeck, J., Tian, H. & Schattschneider, P. Production and application of electron vortex beams. Nature 467, 301–304 (2010).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing