Promiscuity and the evolutionary transition to complex societies

Abstract

Theory predicts that the evolution of cooperative behaviour is favoured by low levels of promiscuity leading to high within-group relatedness1,2,3,4,5. However, in vertebrates, cooperation often occurs between non-relatives and promiscuity rates are among the highest recorded. Here we resolve this apparent inconsistency with a phylogenetic analysis of 267 bird species, demonstrating that cooperative breeding is associated with low promiscuity; that in cooperative species, helping is more common when promiscuity is low; and that intermediate levels of promiscuity favour kin discrimination. Overall, these results suggest that promiscuity is a unifying feature across taxa in explaining transitions to and from cooperative societies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The monogamy hypothesis.
Figure 2: Making sense of the diversity.
Figure 3: Promiscuity and cooperation.
Figure 4: Promiscuity and the transition to and from cooperative breeding.
Figure 5: Kin discrimination and rates of promiscuity.

References

  1. 1

    Boomsma, J. J. Kin selection versus sexual selection: why the ends do not meet. Curr. Biol. 17, R673–R683 (2007)

    CAS  Article  Google Scholar 

  2. 2

    Boomsma, J. J. Lifetime monogamy and the evolution of eusociality. Phil. Trans. R. Soc. B 364, 3191–3207 (2009)

    Article  Google Scholar 

  3. 3

    Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964); The genetical evolution of social behaviour. II. J. Theor. Biol. 7, 17–52 (1964)

    CAS  Article  Google Scholar 

  4. 4

    Charnov, E. L. Evolution of eusocial behaviour: offspring choice or parental parasitism? J. Theor. Biol. 75, 451–465 (1978)

    CAS  Article  Google Scholar 

  5. 5

    Charnov, E. L. Kin selection and helpers at the nest: effects of paternity and biparental care. Anim. Behav. 29, 631–632 (1981)

    Article  Google Scholar 

  6. 6

    Maynard Smith, J. & Szathmary, E. The Major Transitions in Evolution 6–10 (Freeman, 1995)

    Google Scholar 

  7. 7

    Queller, D. C. Relatedness and the fraternal major transitions. Phil. Trans. R. Soc. Lond. B 355, 1647–1655 (2000)

    CAS  Article  Google Scholar 

  8. 8

    Queller, D. C. & Strassmann, J. E. Kin selection and social insects. Bioscience 48, 165–175 (1998)

    Article  Google Scholar 

  9. 9

    Hamilton, W. D. Altruism and related phenomena, mainly in social insects. Annu. Rev. Ecol. Syst. 3, 193–232 (1972)

    Article  Google Scholar 

  10. 10

    West, S. A. & Gardner, A. Altruism, spite, and greenbeards. Science 327, 1341–1344 (2010)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Hughes, W. O. H., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. W. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Cockburn, A. Evolution of helping behavior in cooperatively breeding birds. Annu. Rev. Ecol. Syst. 29, 141–177 (1998)

    Article  Google Scholar 

  13. 13

    Hatchwell, B. J. & Komdeur, J. Ecological constraints, life history traits and the evolution of cooperative breeding. Anim. Behav. 59, 1079–1086 (2000)

    CAS  Article  Google Scholar 

  14. 14

    Clutton-Brock, T. Breeding together: kin selection and mutualism in cooperative vertebrates. Science 296, 69–72 (2002)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Mulder, R. A., Dunn, P. O., Cockburn, A., Lazenby-Cohen, K. A. & Howell, M. J. Helpers liberate female fairy-wrens from constraints on extra-pair mate choice. Proc. R. Soc. Lond. B 255, 223–229 (1994)

    ADS  Article  Google Scholar 

  16. 16

    Krebs, J. R. & Davies, N. B. Behavioural Ecology: An Evolutionary Approach 291–317 (Blackwell Scientific, 1993)

    Google Scholar 

  17. 17

    Bennett, P. M. & Owens, I. P. F. Evolutionary Ecology of Birds (Oxford Univ. Press, 2002)

    Google Scholar 

  18. 18

    Arnold, K. E. & Owens, I. P. F. Cooperative breeding in birds: the role of ecology. Behav. Ecol. 10, 465–471 (1999)

    Article  Google Scholar 

  19. 19

    Arnold, K. E. & Owens, I. P. F. Cooperative breeding in birds: a comparative test of life history hypothesis. Proc. R. Soc. Lond. B 265, 739–745 (1998)

    Article  Google Scholar 

  20. 20

    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies, and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010)

    CAS  Article  Google Scholar 

  21. 21

    Pagel, M. & Meade, A. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167, 808–825 (2006)

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Griffin, A. S. & West, S. A. Kin discrimination and the benefit of helping in cooperatively breeding vertebrates. Science 302, 634–636 (2003)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Cornwallis, C. K., West, S. A. & Griffin, A. S. Routes to indirect fitness in cooperatively breeding vertebrates: kin discrimination and limited dispersal. J. Evol. Biol. 22, 2445–2457 (2009)

    CAS  Article  Google Scholar 

  24. 24

    Gardner, A., West, S. A. & Buckling, A. Bacteriocins, spite and virulence. Proc. R. Soc. Lond. B 271, 1529–1535 (2004)

    CAS  Article  Google Scholar 

  25. 25

    Boomsma, J. J. & Ratnieks, F. L. W. Paternity in eusocial Hymenoptera. Phil. Trans. R. Soc. Lond. B 351, 947–975 (1996)

    ADS  Article  Google Scholar 

  26. 26

    Wilson, E. O. Sociobiology: The New Synthesis 155 (Harvard Univ. Press, 1975)

    Google Scholar 

  27. 27

    Davies, N. B. Dunnock Behaviour and Social Evolution 117–130 (Oxford Univ. Press, 1992)

    Google Scholar 

  28. 28

    Komdeur, J. Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler. Nature 358, 493–495 (1992)

    ADS  Article  Google Scholar 

  29. 29

    Griffith, S. C., Owens, I. P. F. & Thuman, K. A. Extra pair paternity in birds: a review of interspecific variation and adaptive function. Mol. Ecol. 11, 2195–2212 (2002)

    CAS  Article  Google Scholar 

  30. 30

    Spottiswoode, C. & Moller, A. P. Extrapair paternity, migration, and breeding synchrony in birds. Behav. Ecol. 15, 41–57 (2004)

    Article  Google Scholar 

  31. 31

    Cockburn, A. Prevalence of different modes of parental care in birds. Proc. R. Soc. B 273, 1375–1383 (2006)

    Article  Google Scholar 

  32. 32

    Hatchwell, B. J. The evolution of cooperative breeding in birds: kinship, dispersal and life history. Phil. Trans. R. Soc. B 364, 3217–3227 (2009)

    Article  Google Scholar 

  33. 33

    Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008)

    Article  Google Scholar 

  34. 34

    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna) 〈http://www.r-project.org〉 (2010)

  35. 35

    Hadfield, J. D. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010)

    Article  Google Scholar 

  36. 36

    Plummer, M., Best, N., Cowles, K. & Vines, K. Convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2006)

    Google Scholar 

  37. 37

    Raftery, A. E. & Lewis, S. M. One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo. Stat. Sci. 7, 493–497 (1992)

    Article  Google Scholar 

  38. 38

    Geweke, J. in Bayesian Statistics (eds Bernado, J. M., Berger, J. O. Dawid, A. P. & Smith, A. F. M.) 169–194 (Clarendon, 1992)

    Google Scholar 

  39. 39

    Heidelberger, P. & Welch, P. D. Simulation run length control in the presence of an initial transient. Oper. Res. 31, 1109–1144 (1983)

    Article  Google Scholar 

  40. 40

    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999)

    CAS  ADS  Article  Google Scholar 

  41. 41

    Raudenbush, S. W. in The Handbook of Research Synthesis (eds Cooper, H. & Hedges, L. V.) 301–321 (Russell Sage Foundation, 1994)

    Google Scholar 

  42. 42

    de Magalhães, J. P. & Costa, J. A database of vertebrate longevity records and their relation to other life-history traits. J. Evol. Biol. 22, 1770–1774 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Hadfield for statistical advice, K. Boomsma, S. Nakagawa and B. Sheldon for comments and discussion, M. Nelson-Flower and P. Brennan for access to unpublished data, and the ERC and Royal Society for funding. The compilation of our data set was made possible by access to the collections of the Alexander Library.

Author information

Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to Ashleigh S. Griffin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary model code, Supplementary Figure 1 with legend, Supplementary Tables 1-15 and References. (PDF 1455 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cornwallis, C., West, S., Davis, K. et al. Promiscuity and the evolutionary transition to complex societies. Nature 466, 969–972 (2010). https://doi.org/10.1038/nature09335

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.