Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A spindle-independent cleavage furrow positioning pathway

Abstract

The mitotic spindle determines the cleavage furrow site during metazoan cell division1,2, but whether other mechanisms exist remains unknown. Here we identify a spindle-independent mechanism for cleavage furrow positioning in Drosophila neuroblasts. We show that early and late furrow proteins (Pavarotti, Anillin, and Myosin) are localized to the neuroblast basal cortex at anaphase onset by a Pins cortical polarity pathway, and can induce a basally displaced furrow even in the complete absence of a mitotic spindle. Rotation or displacement of the spindle results in two furrows: an early polarity-induced basal furrow and a later spindle-induced furrow. This spindle-independent cleavage furrow mechanism may be relevant to other highly polarized mitotic cells, such as mammalian neural progenitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polarized cortical localization of Pav/Myosin furrow markers.
Figure 2: Spindle-independent cleavage furrow positioning.
Figure 3: Neuroblasts use both spindle-induced and polarity-induced furrow positioning pathways.
Figure 4: Mechanism of polarity-induced furrow formation.

Similar content being viewed by others

References

  1. Oliferenko, S., Chew, T. G. & Balasubramanian, M. K. Positioning cytokinesis. Genes Dev. 23, 660–674 (2009)

    Article  CAS  Google Scholar 

  2. von Dassow, G. Concurrent cues for cytokinetic furrow induction in animal cells. Trends Cell Biol. 19, 165–173 (2009)

    Article  CAS  Google Scholar 

  3. Deng, M., Suraneni, P., Schultz, R. M. & Li, R. The Ran GTPase mediates chromatin signaling to control cortical polarity during polar body extrusion in mouse oocytes. Dev. Cell 12, 301–308 (2007)

    Article  CAS  Google Scholar 

  4. Somers, W. G. & Saint, R. A RhoGEF and Rho family GTPase-activating protein complex links the contractile ring to cortical microtubules at the onset of cytokinesis. Dev. Cell 4, 29–39 (2003)

    Article  CAS  Google Scholar 

  5. Foe, V. E. & von Dassow, G. Stable and dynamic microtubules coordinately shape the myosin activation zone during cytokinetic furrow formation. J. Cell Biol. 183, 457–470 (2008)

    Article  CAS  Google Scholar 

  6. Knoblich, J. A. Mechanisms of asymmetric stem cell division. Cell 132, 583–597 (2008)

    Article  CAS  Google Scholar 

  7. Cai, Y. et al. Apical complex genes control mitotic spindle geometry and relative size of daughter cells in Drosophila neuroblast and pI asymmetric divisions. Cell 112, 51–62 (2003)

    Article  CAS  Google Scholar 

  8. Fuse, N., Hisata, K., Katzen, A. L. & Matsuzaki, F. Heterotrimeric G proteins regulate daughter cell size asymmetry in Drosophila neuroblast divisions. Curr. Biol. 13, 947–954 (2003)

    Article  CAS  Google Scholar 

  9. Albertson, R. & Doe, C. Q. Dlg, Scrib and Lgl regulate neuroblast cell size and mitotic spindle asymmetry. Nature Cell Biol. 5, 166–170 (2003)

    Article  CAS  Google Scholar 

  10. Basto, R. et al. Flies without centrioles. Cell 125, 1375–1386 (2006)

    Article  CAS  Google Scholar 

  11. Giansanti, M. G., Gatti, M. & Bonaccorsi, S. The role of centrosomes and astral microtubules during asymmetric division of Drosophila neuroblasts. Development 128, 1137–1145 (2001)

    CAS  PubMed  Google Scholar 

  12. Izumi, Y. et al. Differential functions of G protein and Baz-aPKC signaling pathways in Drosophila neuroblast asymmetric division. J. Cell Biol. 164, 729–738 (2004)

    Article  CAS  Google Scholar 

  13. Megraw, T. L., Kao, L. R. & Kaufman, T. C. Zygotic development without functional mitotic centrosomes. Curr. Biol. 11, 116–120 (2001)

    Article  CAS  Google Scholar 

  14. Field, C. M. & Alberts, B. M. Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J. Cell Biol. 131, 165–178 (1995)

    Article  CAS  Google Scholar 

  15. Hickson, G. R., Echard, A. & O’Farrell, P. H. Rho-kinase controls cell shape changes during cytokinesis. Curr. Biol. 16, 359–370 (2006)

    Article  CAS  Google Scholar 

  16. Minestrini, G., Harley, A. S. & Glover, D. M. Localization of Pavarotti-KLP in living Drosophila embryos suggests roles in reorganizing the cortical cytoskeleton during the mitotic cycle. Mol. Biol. Cell 14, 4028–4038 (2003)

    Article  CAS  Google Scholar 

  17. Silverman-Gavrila, R. V., Hales, K. G. & Wilde, A. Anillin-mediated targeting of peanut to pseudocleavage furrows is regulated by the GTPase Ran. Mol. Biol. Cell 19, 3735–3744 (2008)

    Article  CAS  Google Scholar 

  18. Royou, A., Sullivan, W. & Karess, R. Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos: its role in nuclear axial expansion and its regulation by Cdc2 activity. J. Cell Biol. 158, 127–137 (2002)

    Article  CAS  Google Scholar 

  19. Barros, C. S., Phelps, C. B. & Brand, A. H. Drosophila nonmuscle myosin II promotes the asymmetric segregation of cell fate determinants by cortical exclusion rather than active transport. Dev. Cell 5, 829–840 (2003)

    Article  CAS  Google Scholar 

  20. Giansanti, M. G., Bucciarelli, E., Bonaccorsi, S. & Gatti, M. Drosophila SPD-2 is an essential centriole component required for PCM recruitment and astral-microtubule nucleation. Curr. Biol. 18, 303–309 (2008)

    Article  CAS  Google Scholar 

  21. Bonaccorsi, S., Giansanti, M. G. & Gatti, M. Spindle assembly in Drosophila neuroblasts and ganglion mother cells. Nature Cell Biol. 2, 54–56 (2000)

    Article  CAS  Google Scholar 

  22. Basto, R., Gomes, R. & Karess, R. E. Rough deal and Zw10 are required for the metaphase checkpoint in Drosophila . Nature Cell Biol. 2, 939–943 (2000)

    Article  CAS  Google Scholar 

  23. Bowman, S. K. et al. The Drosophila NuMA homolog Mud regulates spindle orientation in asymmetric cell division. Dev. Cell 10, 731–742 (2006)

    Article  CAS  Google Scholar 

  24. Izumi, Y. et al. Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nature Cell Biol. 8, 586–593 (2006)

    Article  CAS  Google Scholar 

  25. Siller, K. H., Cabernard, C. & Doe, C. Q. The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nature Cell Biol. 8, 594–600 (2006)

    Article  CAS  Google Scholar 

  26. Conrad, G. W. & Williams, D. C. Polar lobe formation and cytokinesis in fertilized eggs of Ilyanassa obsoleta. I. Ultrastructure and effects of cytochalasin B and colchicine. Dev. Biol. 36, 363–378 (1974)

    Article  CAS  Google Scholar 

  27. Kosodo, Y. et al. Cytokinesis of neuroepithelial cells can divide their basal process before anaphase. EMBO J. 27, 3151–3163 (2008)

    Article  CAS  Google Scholar 

  28. Siegrist, S. E. & Doe, C. Q. Extrinsic cues orient the cell division axis in Drosophila embryonic neuroblasts. Development 133, 529–536 (2006)

    Article  CAS  Google Scholar 

  29. Cabernard, C. & Doe, C. Q. Apical/basal spindle orientation is required for neuroblast homeostasis and neuronal differentiation in Drosophila . Dev. Cell 17, 134–141 (2009)

    Article  CAS  Google Scholar 

  30. Rolls, M. M. et al. Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. J. Cell Biol. 163, 1089–1098 (2003)

    Article  CAS  Google Scholar 

  31. Caussinus, E. & Gonzalez, C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster . Nature Genet. 37, 1125–1129 (2005)

    Article  CAS  Google Scholar 

  32. Yu, F. et al. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100, 399–409 (2000)

    Article  CAS  Google Scholar 

  33. Woods, D. F. & Bryant, P. J. Molecular cloning of the lethal(1)discs large-1 oncogene of Drosophila . Dev. Biol. 134, 222–235 (1989)

    Article  CAS  Google Scholar 

  34. Guan, Z. et al. Mushroom body defect, a gene involved in the control of neuroblast proliferation in Drosophila, encodes a coiled-coil protein. Proc. Natl Acad. Sci. USA 97, 8122–8127 (2000)

    Article  ADS  CAS  Google Scholar 

  35. Yu, F. et al. Distinct roles of Gαi and Gβ13F subunits of the heterotrimeric G protein complex in the mediation of Drosophila neuroblast asymmetric divisions. J. Cell Biol. 162, 623–633 (2003)

    Article  CAS  Google Scholar 

  36. Bonaccorsi, S., Giansanti, M. G. & Gatti, M. Spindle self-organization and cytokinesis during male meiosis in asterless mutants of Drosophila melanogaster . J. Cell Biol. 142, 751–761 (1998)

    Article  CAS  Google Scholar 

  37. Buszczak, M. et al. The Carnegie Protein Trap Library: a versatile tool for Drosophila developmental studies. Genetics 175, 1505–1531 (2007)

    Article  CAS  Google Scholar 

  38. Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457, 495–499 (2009)

    Article  ADS  CAS  Google Scholar 

  39. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila . Nature 448, 151–156 (2007)

    Article  ADS  CAS  Google Scholar 

  40. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999)

    Article  CAS  Google Scholar 

  41. Siegrist, S. E. & Doe, C. Q. Microtubule-induced Pins/Gαi cortical polarity in Drosophila neuroblasts. Cell 123, 1323–1335 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Brand, D. Glover, C.-Y. Lee, M. Peifer, J. Raff, E. Wieschaus, A. Wilde, and the Bloomington and Vienna Drosophila RNAi Center stock centres for fly stocks and/or antibody reagents; R. Andersen, B. Bowerman, M. Goulding and B. Nolan for comments on the manuscript; and T. Gillies and K. Hirono for technical support. This work was supported by the National Institutes of Health (GM068032; to K.P.), the American Heart Association (to C.C. and K.P.), the Swiss National Science Foundation (to C.C.) and HHMI (to C.Q.D.).

Author information

Authors and Affiliations

Authors

Contributions

C.C., K.E.P. and C.Q.D. conceived and designed the project. C.C. performed all the experiments. C.C. and C.Q.D. wrote the manuscript with input from K.E.P.

Corresponding author

Correspondence to Chris Q. Doe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-4 with legends and legends for Supplementary Movies 1-11. (PDF 310 kb)

Supplementary Movies 1-3

This movie shows that Pavarotti, Anillin and Myosin is localized to the larval neuroblast basal cortex in early anaphase C (see Supplementary Information file for full legend). (MOV 3243 kb)

Supplementary Movie 4

This movie shows that asymmetric Myosin localization does not require the mitotic spindle (see Supplementary Information file for full legend). (MOV 959 kb)

Supplementary Movie 5

This movie shows that an apically displaced spindle does not alter the asymmetric localization of Myosin (see Supplementary Information file for full legend). (MOV 1384 kb)

Supplementary Movie 6

This movie shows that the altered spindle orientation does not change Pavarotti basal localization (see Supplementary Information file for full legend). (MOV 932 kb)

Supplementary Movie 7

This movie shows that the altered spindle orientation does not change Myosin localization to the basal cortex (see Supplementary Information file for full legend). (MOV 610 kb)

Supplementary Movie 8

This movie shows that the altered spindle orientation results in the formation of basal polar lobes (see Supplementary Information file for full legend). (MOV 2661 kb)

Supplementary Movie 9

This movie shows that polarity-induced furrow initiation precedes spindle-induced furrow initiation (see Supplementary Information file for full legend). (MOV 375 kb)

Supplementary Movie 10

This movie shows that pins are required for polarity-induced furrow formation during symmetric cell divisions (see Supplementary Information file for full legend). (MOV 419 kb)

Supplementary Movie 11

This move shows that Basal Myosin localization is independent of spindle symmetry (see Supplementary Information file for full legend). (MOV 1497 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabernard, C., Prehoda, K. & Doe, C. A spindle-independent cleavage furrow positioning pathway. Nature 467, 91–94 (2010). https://doi.org/10.1038/nature09334

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09334

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing