A strong ferroelectric ferromagnet created by means of spin–lattice coupling

  • An Addendum to this article was published on 06 July 2011


Ferroelectric ferromagnets are exceedingly rare, fundamentally interesting multiferroic materials that could give rise to new technologies in which the low power and high speed of field-effect electronics are combined with the permanence and routability of voltage-controlled ferromagnetism1,2. Furthermore, the properties of the few compounds that simultaneously exhibit these phenomena1,2,3,4,5 are insignificant in comparison with those of useful ferroelectrics or ferromagnets: their spontaneous polarizations or magnetizations are smaller by a factor of 1,000 or more. The same holds for magnetic- or electric-field-induced multiferroics6,7,8. Owing to the weak properties of single-phase multiferroics, composite and multilayer approaches involving strain-coupled piezoelectric and magnetostrictive components are the closest to application today1,2. Recently, however, a new route to ferroelectric ferromagnets was proposed9 by which magnetically ordered insulators that are neither ferroelectric nor ferromagnetic are transformed into ferroelectric ferromagnets using a single control parameter, strain. The system targeted, EuTiO3, was predicted to exhibit strong ferromagnetism (spontaneous magnetization, 7 Bohr magnetons per Eu) and strong ferroelectricity (spontaneous polarization, 10 µC cm−2) simultaneously under large biaxial compressive strain9. These values are orders of magnitude higher than those of any known ferroelectric ferromagnet and rival the best materials that are solely ferroelectric or ferromagnetic. Hindered by the absence of an appropriate substrate to provide the desired compression we turned to tensile strain. Here we show both experimentally and theoretically the emergence of a multiferroic state under biaxial tension with the unexpected benefit that even lower strains are required, thereby allowing thicker high-quality crystalline films. This realization of a strong ferromagnetic ferroelectric points the way to high-temperature manifestations of this spin–lattice coupling mechanism10. Our work demonstrates that a single experimental parameter, strain, simultaneously controls multiple order parameters and is a viable alternative tuning parameter to composition11 for creating multiferroics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Predicted effect of biaxial strain on EuTiO 3 and our approach to imparting such strain in EuTiO 3 films using epitaxy.
Figure 2: Structural characterization by X-ray diffraction and STEM of 22-nm-thick commensurate epitaxial EuTiO 3 films.
Figure 3: Commensurate EuTiO 3 strained in biaxial tension at +1.1% on DyScO 3 is ferroelectric below T c  ≈ 250 K.
Figure 4: Magnetization and capacitance measurements showing that EuTiO 3 on DyScO 3 is ferromagnetic below T C = 4.24 ± 0.02 K and that these two quantities are coupled.


  1. 1

    Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nature Mater. 6, 21–29 (2007)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Rivera, J.-P. & Schmid, H. Electrical and optical measurements on nickel iodine boracite. Ferroelectrics 36, 447–450 (1981)

    CAS  Article  Google Scholar 

  4. 4

    Ikeda, N. et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4 . Nature 436, 1136–1138 (2005)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Park, J. Y., Park, J. H., Jeong, Y. K. & Jang, H. M. Dynamic magnetoelectric coupling in “electronic ferroelectric” LuFe2O4 . Appl. Phys. Lett. 91, 152903 (2007)

    ADS  Article  Google Scholar 

  6. 6

    Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Lottermoser, T. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Kimura, T., Sekio, Y., Nakamura, H., Siegrist, T. & Ramirez, A. P. Cupric oxide as an induced-multiferroic with high-Tc . Nature Mater. 7, 291–294 (2008)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Fennie, C. J. & Rabe, K. M. Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys. Rev. Lett. 97, 267602 (2006)

    ADS  Article  Google Scholar 

  10. 10

    Lee, J. H. & Rabe, K. M. Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles. Phys. Rev. Lett. 104, 207204 (2010)

    ADS  Article  Google Scholar 

  11. 11

    Goto, T., Kimura, T., Lawes, G., Ramirez, A. P. & Tokura, Y. Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys. Rev. Lett. 92, 257201 (2004)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Nguyen, L. D., Brown, A. S., Thompson, M. A. & Jelloian, L. M. 50-nm self-aligned-gate pseudomorphic AlInAs/GaInAs high electron mobility transistors. IEEE Trans. Electron. Dev. 39, 2007–2014 (1992)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Bozovic, I., Logvenov, G., Belca, I., Narimbetov, B. & Sveklo, I. Epitaxial strain and superconductivity in La2–xSrxCuO4 thin films. Phys. Rev. Lett. 89, 107001 (2002)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Beach, R. S. et al. Enhanced Curie temperatures and magnetoelastic domains in Dy/Lu superlattices and films. Phys. Rev. Lett. 70, 3502–3505 (1993)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Fuchs, D. et al. Tuning the magnetic properties of LaCoO3 thin films by epitaxial strain. Phys. Rev. B 77, 014434 (2008)

    ADS  Article  Google Scholar 

  16. 16

    Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Pertsev, N. A., Tagantsev, A. K. & Setter, N. Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys. Rev. B 61, R825–R829 (2000)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Katsufuji, T. & Takagi, H. Coupling between magnetism and dielectric properties in quantum paraelectric EuTiO3 . Phys. Rev. B 64, 054415 (2001)

    ADS  Article  Google Scholar 

  20. 20

    Shvartsman, V. V., Borisov, P., Kleemann, W. & Kamba, S. &. Katsufuji, T. Large off-diagonal magnetoelectric coupling in the quantum paraelectric antiferromagnet EuTiO3 . Phys. Rev. B 81, 064426 (2010)

    ADS  Article  Google Scholar 

  21. 21

    Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Chu, M.-W. et al. Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nature Mater. 3, 87–90 (2004)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Lee, J. H. et al. Optical band gap and magnetic properties of unstrained EuTiO3 films. Appl. Phys. Lett. 94, 212509 (2009)

    ADS  Article  Google Scholar 

  25. 25

    Ke, X. et al. Low temperature magnetism in the perovskite substrate DyScO3 . Appl. Phys. Lett. 94, 152503 (2009)

    ADS  Article  Google Scholar 

  26. 26

    Zhai, J. Y., Xing, Z. P., Dong, S. X., Li, J. F. & Viehland, D. Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature. Appl. Phys. Lett. 88, 062510 (2006)

    ADS  Article  Google Scholar 

  27. 27

    Gajek, M. et al. Tunnel junctions with multiferroic barriers. Nature Mater. 6, 296–302 (2007)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Bayrashev, A., Robbins, W. P. & Ziaie, B. Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composites. Sens. Actuators A 114, 244–249 (2004)

    CAS  Article  Google Scholar 

  29. 29

    Fetisov, Y. K. & Srinivasan, G. Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Appl. Phys. Lett. 88, 143503 (2006)

    ADS  Article  Google Scholar 

  30. 30

    Das, J., Song, Y.-Y., Mo, N., Krivosik, P. & Patton, C. E. Electric-field-tunable low loss multiferroic ferrimagnetic-ferroelectric heterostructures. Adv. Mater. 21, 2045–2049 (2009)

    CAS  Article  Google Scholar 

  31. 31

    Brous, J., Fankuchen, I. & Banks, E. Rare earth titanates with a perovskite structure. Acta Crystallogr. 6, 67–70 (1953)

    CAS  Article  Google Scholar 

  32. 32

    Wang, H.-H., Fleet, A., Brock, J. D., Dale, D. & Suzuki, Y. Nearly strain-free heteroepitaxial system for fundamental studies of pulsed laser deposition: EuTiO3 on SrTiO3 . J. Appl. Phys. 96, 5324–5328 (2004)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Kugimiya, K., Fujita, K., Tanaka, K. & Hirao, K. Preparation and magnetic properties of oxygen deficient EuTiO3–δ thin films. J. Magn. Magn. Mater. 310, 2268–2270 (2007)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Chae, S. C. et al. Magnetic properties of insulating RTiO3 thin films. J. Electroceram. 22, 216–220 (2009)

    CAS  Article  Google Scholar 

  35. 35

    Fujita, K., Wakasugi, N., Murai, S., Zong, Y. & Tanaka, K. High-quality antiferromagnetic EuTiO3 epitaxial thin films on SrTiO3 prepared by pulsed laser deposition and postannealing. Appl. Phys. Lett. 94, 062512 (2009)

    ADS  Article  Google Scholar 

  36. 36

    Hatabayashi, K. et al. Fabrication of EuTiO3 epitaxial thin films by pulsed laser deposition. Jpn. J. Appl. Phys. 48, 100208 (2009)

    ADS  Article  Google Scholar 

  37. 37

    Theis, C. D. & Schlom, D. G. Cheap and stable titanium source for use in oxide molecular beam epitaxy systems. J. Vac. Sci. Technol. A 14, 2677–2679 (1996)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Steins, M., Doerschel, J. & Reiche, P. Crystal structure of aluminium lanthanum strontium tantalum oxide, (La0. 272Sr0. 728)(Al0. 648Ta0. 352)O3 . Z. Kristallogr. New Cryst. Struct. 212, 77 (1997)

    CAS  Google Scholar 

  40. 40

    Hellwege, K.-H. & Hellwege, A. M. (eds) Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology New Series, Group III, Vol. 16a 59 (Springer, 1981)

    Google Scholar 

  41. 41

    Koster, G., Kropman, B. L., Rijnders, G., Blank, D. H. A. & Rogalla, H. Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett. 73, 2920–2922 (1998)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Veličkov, B., Kahlenberg, V., Bertram, R. & Bernhagen, M. Crystal chemistry of GdScO3, DyScO3, SmScO3, and NdScO3 . Z. Kristallogr. 222, 466–473 (2007)

    Article  Google Scholar 

  43. 43

    Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J. Phys. Condens. Matter 9, 767–808 (1997)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)

    ADS  CAS  Article  Google Scholar 

  45. 45

    Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    ADS  CAS  Article  Google Scholar 

  46. 46

    Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    ADS  CAS  Article  Google Scholar 

Download references


The authors acknowledge discussions and interactions with M. D. Biegalski, D. H. A. Blank, C. B. Eom, M. B. Holcomb, M. Ležaić, J. Mannhart, L. W. Martin, D. V. Pelekhov, R. Ramesh, K. Z. Rushchanskii, N. Samarth, A. Schmehl, D. A. Tenne, J.-M. Triscone, D. Viehland and L. Yan. In addition, the financial support of the National Science Foundation through grant DMR-0507146 and the MRSEC program (DMR-0520404, DMR-0820404 and DMR-0820414), and of the Czech Science Foundation (project no. 202/09/0682), is gratefully acknowledged. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357.

Author information




The first-principles calculations were performed by C.J.F. and K.M.R. The thin films were synthesized by J.H.L. and D.G.S. on single-crystal substrates including DyScO3 grown by M.B. and R.U. The films were characterized using the MOKE by L.F., Y.W.J., P.C.H. and E.J.-H.; by SHG by E.V. and V. Gopalan; using a SQUID and by capacitance by X.K. and P.S.; by electron microscopy and spectroscopy by L.F.K. and D.A.M.; by X-ray diffraction by J.H.L., J.W.K. and P.J.R.; by X-ray absorption spectroscopy and X-ray magnetic circular dichroism by J.W.F.; by Rutherford backscattering spectrometry by T.H., M.R. and J.S.; and by far-infrared reflectance by V. Goian and S.K. D.G.S., C.J.F., J.W.F. and J.H.L. wrote the manuscript.

Corresponding author

Correspondence to Darrell G. Schlom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1 - 16 with Legends, Supplementary Discussions 1- 8, Supplementary Equations 1 - 2, Supplementary Table 1 and References. (PDF 2535 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, J., Fang, L., Vlahos, E. et al. A strong ferroelectric ferromagnet created by means of spin–lattice coupling. Nature 466, 954–958 (2010). https://doi.org/10.1038/nature09331

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.