Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Global patterns and predictors of marine biodiversity across taxa

Abstract

Global patterns of species richness and their structuring forces have fascinated biologists since Darwin1,2 and provide critical context for contemporary studies in ecology, evolution and conservation. Anthropogenic impacts and the need for systematic conservation planning have further motivated the analysis of diversity patterns and processes at regional to global scales3. Whereas land diversity patterns and their predictors are known for numerous taxa4,5, our understanding of global marine diversity has been more limited, with recent findings revealing some striking contrasts to widely held terrestrial paradigms6,7,8. Here we examine global patterns and predictors of species richness across 13 major species groups ranging from zooplankton to marine mammals. Two major patterns emerged: coastal species showed maximum diversity in the Western Pacific, whereas oceanic groups consistently peaked across broad mid-latitudinal bands in all oceans. Spatial regression analyses revealed sea surface temperature as the only environmental predictor highly related to diversity across all 13 taxa. Habitat availability and historical factors were also important for coastal species, whereas other predictors had less significance. Areas of high species richness were disproportionately concentrated in regions with medium or higher human impacts. Our findings indicate a fundamental role of temperature or kinetic energy in structuring cross-taxon marine biodiversity, and indicate that changes in ocean temperature, in conjunction with other human impacts, may ultimately rearrange the global distribution of life in the ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patterns of species richness for individual taxa.
Figure 2: Global species richness and hotspots across taxa.
Figure 3: Diversity, SST and human impact overlap.

Similar content being viewed by others

References

  1. Darwin, C. The Origin of Species (John Murray, 1859)

    Google Scholar 

  2. Briggs, J. C. Marine Zoogeography (McGraw-Hill, 1974)

    Google Scholar 

  3. Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000)

    Article  CAS  Google Scholar 

  4. Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000)

    Article  CAS  Google Scholar 

  5. Jetz, W., Kreft, H., Ceballos, G. & Mutke, J. Global associations between terrestrial producer and vertebrate consumer diversity. Proc. R. Soc. Lond. B 276, 269–278 (2009)

    Article  Google Scholar 

  6. Rutherford, S., D’Hondt, S. & Prell, W. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400, 749–753 (1999)

    Article  CAS  ADS  Google Scholar 

  7. Worm, B. et al. Global patterns of predator diversity in the open oceans. Science 309, 1365–1369 (2005)

    Article  CAS  ADS  Google Scholar 

  8. Whitehead, H., McGill, B. & Worm, B. Diversity of deep-water cetaceans in relation to temperature: implications for ocean warming. Ecol. Lett. 11, 1198–1207 (2008)

    Article  Google Scholar 

  9. Hillebrand, H. Strength, slope and variability of marine latitudinal gradients. Mar. Ecol. Prog. Ser. 273, 251–267 (2004)

    Article  ADS  Google Scholar 

  10. Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008)

    Article  CAS  ADS  Google Scholar 

  11. Rohde, K. Latitudinal gradients in species-diversity: the search for the primary cause. Oikos 65, 514–527 (1992)

    Article  Google Scholar 

  12. Allen, A. P., Gillooly, J. F. & Brown, J. H. in Scaling Biodiversity (eds Storch, D., Marquet, P. A. and Brown, J. H.) (Cambridge Univ. Press, 2007)

    Google Scholar 

  13. Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004)

    Article  Google Scholar 

  14. Clarke, A. & Gaston, K. J. Climate, energy and diversity. Proc. R. Soc. Lond. B 273, 2257–2266 (2006)

    Article  Google Scholar 

  15. Evans, K. L., Warren, P. H. & Gaston, K. J. Species–energy relationships at the macroecological scale: a review of the mechanisms. Biol. Rev. Camb. Philos. Soc. 80, 1–25 (2005)

    Article  Google Scholar 

  16. Fraser, R. H. & Currie, D. J. The species richness-energy hypothesis in a system where historical factors are thought to prevail: coral reefs. Am. Nat. 148, 138–159 (1996)

    Article  Google Scholar 

  17. Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2, 199–229 (2010)

    Article  ADS  Google Scholar 

  18. Rosenzweig, M. L. Species diversity in space and time. (Cambridge Univ. Press, 1995)

    Book  Google Scholar 

  19. Etnoyer, P., Canny, D., Mate, B. & Morgan, L. Persistent pelagic habitats in the Baja California to Bering Sea (B2B) ecoregion. Oceanography 17, 90–101 (2004)

    Article  Google Scholar 

  20. Cairns, D. K., Gaston, A. J. & Huettmann, F. Endothermy, ectothermy and the global structure of marine vertebrate communities. Mar. Ecol. Prog. Ser. 356, 239–250 (2008)

    Article  ADS  Google Scholar 

  21. Mora, C. & Robertson, D. R. Factors shaping the range-size frequency distribution of the endemic fish fauna of the Tropical Eastern Pacific. J. Biogeogr. 32, 277–286 (2005)

    Article  Google Scholar 

  22. Myers, N. et al. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000)

    Article  CAS  ADS  Google Scholar 

  23. Webb, T. J., Vanden Berghe, E. & O’Dor, R. K. Biodiversity’s big wet secret: The global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLoS ONE 10.1371/journal.pone.0010223 (2010)

  24. Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006)

    Article  CAS  ADS  Google Scholar 

  25. Ricklefs, R. E. History and diversity: explorations at the intersection of ecology and evolution. Am. Nat. 170, S56–S70 (2007)

    Article  Google Scholar 

  26. Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284 (2002)

    Article  CAS  ADS  Google Scholar 

  27. Levitus, S. et al. Anthropogenic warming of the Earth’s climate system. Science 292, 267–270 (2001)

    Article  CAS  ADS  Google Scholar 

  28. Worm, B. & Lotze, H. K. in Climate and Global Change: Observed Impacts on Planet Earth (ed. Letcher, T.) 263–279 (Elsevier, 2009)

    Google Scholar 

  29. Mora, C., Tittensor, D. P. & Myers, R. A. The completeness of taxonomic inventories for describing the global diversity and distribution of marine fishes. Proc. R. Soc. Lond. B 275, 149–155 (2008)

    Article  Google Scholar 

  30. Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007)

    Article  CAS  ADS  Google Scholar 

  31. Fornwall, M. Planning for OBIS: examining relationships with existing national and international biodiversity information systems. Oceanography 13, 31–38 (2000)

    Article  Google Scholar 

  32. Froese, R. & Pauly, D. FishBasehttp://www.fishbase.org〉 (2010)

    Google Scholar 

  33. FAO. FAO Species Catalogue (eds Roper, C. F. E., Sweeney, M. J. & Nauen, C. E.) Vol. 3 (FAO, 1984)

  34. FAO. Cephalopods of the World: An Annotated and Illustrated Catalogue of Cephalopod Species Known to Date (eds Jereb, P. & Roper, C. F. E.) Vol. 1 (FAO, 2005)

  35. Veron, J. E. N. Corals of the World Vols 1–3 (Australian Institute of Marine Science, 2000)

    Google Scholar 

  36. Brinton, E. et al. Euphausiids of the World Ocean CD-ROM (ETI Bioinformatics, 2000)

    Google Scholar 

  37. Prell, W., Martin, A., Cullen, J. & Trend, M. The Brown University Foraminiferal Data Base, IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series # 1999-027. (NOAA/NGDC Paleoclimatology Program, 1999)

    Google Scholar 

  38. Schipper, J. et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230 (2008)

    Article  CAS  ADS  Google Scholar 

  39. UNEP-WCMC. Global Distribution of Mangroves (UNEP World Conservation Monitoring Centre/ISME) In World Mangrove Atlas (eds Spalding, M. D., Blasco, F. & Field, C. D.) (The international Society for Mangrove Ecosystems, 1997)

  40. Spalding, M. D., Blasco, F. & Field, C. D. eds. World Mangrove Atlas (The International Society for Mangrove Ecosystems, 1997)

    Google Scholar 

  41. UNEP-WCMC & Short, F. T. Global Seagrass Diversity (v1.0) in World Atlas of Seagrasses (Green, E. P. & Short, F. T.) (Univ. of California Press, 2003)

    Google Scholar 

  42. UNEP-WCMC & Short, F. T. Global Seagrass Species Ranges (v1.0) in World Atlas of Seagrasses (Green, E. P. & Short, F. T.) (Univ. of California Press, 2003)

    Google Scholar 

  43. UNEP-WCMC & Short, F. T. Global Distribution of Seagrasses (v2.0) in World Atlas of Seagrasses (Green, E. P. & Short, F. T.) (Univ. of California Press, 2003/2005)

    Google Scholar 

  44. Green, E. P. & Short, F. T. World Atlas of Seagrasses (Univ. of California Press, 2003)

    Google Scholar 

  45. Lucifora, L., Garcia, V. & Worm, B. Global diversity hotspots and conservation priorities for sharks. PLoS ONE (in the press)

  46. Lutz, M. J., Calderia, K., Dunbar, R. B. & Behrenfield, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux describe biological pump efficiency in the global ocean. J. Geophys. Res. 112, C10011 (2007)

    Article  ADS  Google Scholar 

  47. Garcia, H. E., Locarnini, R. A., Boyer, T. P. & Antonov, J. I. World Ocean Atlas 2005 (ed. Levitus, S.) Vol. 3 (US Government Printing Office, 2006)

    Google Scholar 

  48. Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008)

    Article  CAS  ADS  Google Scholar 

  49. Reynolds, R. W. et al. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002)

    Article  ADS  Google Scholar 

  50. Casey, K. S., Brandon, T. B., Cornillon, P. & Evans, R. Oceanography from Space, Revisited (eds Barale, V., Gower, J. F. R. & Alberotanza, L.) Ch. 16 (Springer, 2010)

    Google Scholar 

  51. Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997)

    Article  CAS  ADS  Google Scholar 

  52. Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000)

    Article  CAS  Google Scholar 

  53. Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Phil. Trans. R. Soc. B. 345, 101–118 (1994)

    Article  CAS  ADS  Google Scholar 

  54. Chao, A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11, 256–270 (1984)

    Google Scholar 

  55. Chao, A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783–791 (1987)

    Article  CAS  MathSciNet  Google Scholar 

  56. Smith, E. P. & van Belle, G. Nonparametric estimation of species richness. Biometrics 40, 119–129 (1984)

    Article  Google Scholar 

  57. Robertson, D. R. & Allen, G. R. Shorefishes of the Tropical Eastern Pacific: an Information System CD-ROM (Smithsonian Tropical Research Institute, 2002)

    Google Scholar 

  58. Kulbicki, M., Labrosse, P. & Ferraris, J. Challenging Coasts: Transdisciplinary Excursions into Integrated Coastal Zone Development (ed. Visser, L. E.) (Amsterdam Univ. Press, 2004)

    Google Scholar 

  59. Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–47 (2007)

    Google Scholar 

  60. Kulbicki, M. Biogeography of reef fishes of the French territories in the South Pacific. Cybium 31, 275–288 (2007)

    Google Scholar 

  61. Kulbicki, M. Du Macrocosme au Microcosme: Les Poissons de Récif du Pacifique Comme Modèle HDR report (Univ. de Perpignan, 2007)

    Google Scholar 

  62. Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007)

    Article  Google Scholar 

  63. R Core Development Team. R: A Language and Environment for Statistical Computinghttp://www.R-project.org〉 (2009)

  64. Oksanen, J. et al. vegan: Community Ecology Package. R package version 1.15-4. 〈http://CRAN.R-project.org/package=vegan〉 (2009)

    Google Scholar 

  65. Bivand, R. spdep: Spatial Dependence: Weighting Schemes, Statistics and Models. R package version 0.4-56. 〈http://CRAN.R-project.org/package=spdep〉 (2009)

    Google Scholar 

  66. Pebesma, E. J. Multivariable geostatistics in S: the gstat package. Comput. Geosci. 30, 683–691 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge contributions and sharing of data from L. Lucifora, V. Garcia, M. Kulbicki and P. Hull. We thank all the sources in Supplementary Tables 1 and 2 for making their data available. We are grateful to all OBIS data providers for making this study possible; see http://www.iobis.org for a full list. A. Rollo, G. Britten and D. Boyce provided technical help; W. Blanchard offered statistical advice. This paper builds on the efforts of all Census of Marine Life contributors, and long-term support from the Sloan Foundation. W.J. acknowledges support from NSF grants DBI-0960550 and BCS-0648733.

Author information

Authors and Affiliations

Authors

Contributions

B.W., H.K.L., D.P.T., W.J. and C.M. conceived the study, D.P.T, C.M., E.V.B., D.R., B.W. and H.K.L. compiled the data, D.P.T., W.J. and C.M. conducted the analyses, and all authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Derek P. Tittensor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S6 with legends, Supplementary Tables S1-S8 and References. (PDF 2089 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tittensor, D., Mora, C., Jetz, W. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010). https://doi.org/10.1038/nature09329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09329

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene