Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Olivine water contents in the continental lithosphere and the longevity of cratons


Cratons, the ancient cores of continents, contain the oldest crust and mantle on the Earth (>2 Gyr old)1. They extend laterally for hundreds of kilometres, and are underlain to depths of 180–250 km by mantle roots that are chemically and physically distinct from the surrounding mantle2,3,4. Forming the thickest lithosphere on our planet, they act as rigid keels isolated from the flowing asthenosphere5; however, it has remained an open question how these large portions of the mantle can stay isolated for so long from mantle convection. Key physical properties thought to contribute to this longevity include chemical buoyancy due to high degrees of melt-depletion and the stiffness imparted by the low temperatures of a conductive thermal gradient2,6,7. Geodynamic calculations, however, suggest that these characteristics are not sufficient to prevent the lithospheric mantle from being entrained during mantle convection over billions of years6,7. Differences in water content are a potential source of additional viscosity contrast between cratonic roots and ambient mantle owing to the well-established hydrolytic weakening effect in olivine8,9,10, the most abundant mineral of the upper mantle. However, the water contents of cratonic mantle roots have to date been poorly constrained. Here we show that olivine in peridotite xenoliths from the lithosphere–asthenosphere boundary region of the Kaapvaal craton mantle root are water-poor and provide sufficient viscosity contrast with underlying asthenosphere to satisfy the stability criteria required by geodynamic calculations9. Our results provide a solution to a puzzling mystery of plate tectonics, namely why the oldest continents, in contrast to short-lived oceanic plates, have resisted recycling into the interior of our tectonically dynamic planet.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Water contents of olivine as a function of physical and chemical variables.
Figure 2: Calculated viscosities versus depth for olivine aggregates in dislocation creep in a cratonic geotherm environment.
Figure 3: Simplified sketch of a cross-section of the upper mantle beneath a craton with viscosity and water content variations.


  1. 1

    Walker, R. J., Carlson, R. W., Shirey, S. B. & Boyd, F. R. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: implications for the chemical evolution of subcontinental mantle. Geochim. Cosmochim. Acta 53, 1583–1595 (1989)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Jordan, T. H. Composition and development of the continental tectosphere. Nature 274, 544–548 (1978)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Larson, A. M., Snoke, J. A. & James, D. E. S-wave velocity structure, mantle xenoliths and the upper mantle beneath the Kaapvaal craton. Geophys. J. Int. 167, 171–186 (2006)

    ADS  Article  Google Scholar 

  4. 4

    Muller, M. R. et al. Lithospheric structure, evolution and diamond prospectivity of the Rehoboth Terrane and western Kaapvaal craton, southern Africa: constraints from broadband magnetotellurics. Lithos 112 (S1). 93–105 (2009)

    ADS  Article  Google Scholar 

  5. 5

    James, D. E., Fouch, M. J., VanDecar, J. C. & van der Lee, S. Tectospheric structure beneath Southern Africa. Geophys. Res. Lett. 28, 2485–2488 (2001)

    ADS  Article  Google Scholar 

  6. 6

    O'Neill, C. J., Lenardic, A., Griffin, W. L. & O'Reilly, S. Y. Dynamics of cratons in an evolving mantle. Lithos 102, 12–24 (2008)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Sleep, N. H. Survival of Archean cratonal lithosphere. J. Geophys. Res. B 108, 2302–2331 (2003)

    ADS  Article  Google Scholar 

  8. 8

    Mackwell, S. J., Kohlstedt, D. L. & Paterson, M. S. The role of water in the deformation of olivine single crystals. J. Geophys. Res. 90, 11319–11333 (1985)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Hirth, G., Evans, R. L. & Chave, A. D. Comparison of continental and oceanic mantle electrical conductivity: is the Archean lithosphere dry? Geochem. Geophys. Geosyst. 1, 2000GC000048 (2000)

    Article  Google Scholar 

  10. 10

    Li, Z.-X. A. et al. Water contents in mantle xenoliths from the Colorado Plateau and vicinity: implications for the mantle rheology and hydration-induced thinning of continental lithosphere. J. Geophys. Res. B 113, 1–22 (2008)

    Google Scholar 

  11. 11

    Bell, D. R. & Rossman, G. R. Water in Earth's mantle: the role of nominally anhydrous minerals. Science 255, 1391–1397 (1992)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Woodland, A. B. & Koch, M. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet. Sci. Lett. 214, 295–310 (2003)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Lazarov, M., Woodland, A. B. & Brey, G. P. Thermal state and redox conditions of the Kaapvaal mantle: a study of xenoliths from Finsch mine, South Africa. Lithos 112 (S2). 913–923 (2009)

    ADS  Article  Google Scholar 

  14. 14

    Bell, D. R., Schmitz, M. D. & Janney, P. E. Mesozoic thermal evolution of the southern African mantle lithosphere. Lithos 71, 273–287 (2003)

    ADS  CAS  Article  Google Scholar 

  15. 15

    James, D. et al. Xenolith constraints on seismic velocities in the upper mantle beneath southern Africa. Geochem. Geophys. Geosyst. 5, Q01002 (2004)

    ADS  Article  Google Scholar 

  16. 16

    Gurney, J. J. & Harte, B. Chemical variations in upper mantle nodules from southern African kimberlites. Phil. Trans. R. Soc. Lond. A 297, 273–293 (1980)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Peslier, A. H., Woodland, A. B. & Wolff, J. A. Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic olivines from Southern Africa. Geochim. Cosmochim. Acta 72, 2711–2722 (2008)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Dixon, J. E., Dixon, T. H., Bell, D. R. & Malservisi, R. Lateral variation in upper mantle viscosity: role of water. Earth Planet. Sci. Lett. 222, 451–467 (2004)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Frost, D. J. & McCammon, C. A. The redox state of the Earth's mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Mibe, K. et al. Second critical endpoint in the peridotite-H2O system. J. Geophys. Res. B 112, 1–8 (2007)

    Article  Google Scholar 

  21. 21

    Hirschmann, M. M. Water, melting, and the deep Earth H2O cycle. Annu. Rev. Earth Planet. Sci. 34, 629–653 (2006)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Bali, E., Bolfan-Casanova, N. & Koga, K. T. Pressure and temperature dependence of H solubility in forsterite: an implication to water activity in the Earth interior. Earth Planet. Sci. Lett. 268, 354–363 (2008)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Bai, Q. & Kohlstedt, D. L. Substantial hydrogen solubility in olivine and implications for water storage in the mantle. Nature 357, 672–674 (1992)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Kesson, S. E. & Ringwood, A. E. Slab-mantle interactions: 2. The formation of diamonds. Chem. Geol. 78, 97–118 (1989)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Bell, D. R., Rossman, G. R. & Moore, R. O. Abundance and partitioning of OH in a high pressure magmatic system: megacrysts from the Monastery kimberlite, South Africa. J. Petrol. 45, 1539–1564 (2004)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Yamamoto, J. et al. In situ strength measurements on natural upper-mantle minerals. Phys. Chem. Miner. 35, 249–257 (2008)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Pollack, H. N. Cratonization and thermal evolution of the mantle. Earth Planet. Sci. Lett. 80, 175–182 (1986)

    ADS  Article  Google Scholar 

  28. 28

    Ji, S., Wang, Z. C. & Wirth, R. Bulk flow strength of forsterite-enstatite composites as a function of forsterite content. Tectonophysics 341, 69–93 (2001)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Bai, Q., Mackwell, S. J. & Kohlstedt, D. L. High-temperature creep of olivine single crystals 1. Mechanical results for buffered samples. J. Geophys. Res. 96, 2441–2463 (1991)

    ADS  Article  Google Scholar 

  30. 30

    Eaton, D. W. et al. The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons. Lithos 109, 1–22 (2008)

    ADS  Article  Google Scholar 

  31. 31

    Michaut, C., Jaupart, C. & Bell, D. R. Transient geotherms in Archean continental lithosphere: new constraints on thickness and heat production of the subcontinental lithospheric mantle. J. Geophys. Res. 112 B04408 1029/2006JB004464 (2007)

    ADS  Article  Google Scholar 

  32. 32

    Grant, K., Ingrin, J., Lorand, J. P. & Dumas, P. Water partitioning between mantle minerals from peridotite xenoliths. Contrib. Mineral. Petrol. 154, 15–34 (2007)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Kurosawa, M., Yurimoto, H. & Sueno, S. Patterns in the hydrogen and trace element compositions of mantle olivines. Phys. Chem. Miner. 24, 385–395 (1997)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Brey, G. P., Bulatov, V. K. & Girnis, A. V. Geobarometry for peridotites: experiments in simple and natural systems from 6 to 10 GPa. J. Petrol. 49, 3–24 (2008)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Brey, G. P. & Kohler, T. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 31, 1353–1378 (1990)

    ADS  CAS  Article  Google Scholar 

  36. 36

    O'Neill, H., St. C & Wood, B. J. An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contrib. Mineral. Petrol. 70, 59–70 (1979)

    ADS  CAS  Article  Google Scholar 

  37. 37

    O'Neill, H., St. C & Wall, V. J. The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth's upper mantle. J. Petrol. 28, 1169–1191 (1987)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Webb, S. A. C. & Wood, B. J. Spinel-pyroxene-garnet relationships and their dependance on Cr/Al ratio. Contrib. Mineral. Petrol. 92, 471–480 (1986)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Libowitzky, E. & Rossman, G. R. Principles of quantitative absorbance measurements in anisotropic crystals. Phys. Chem. Miner. 23, 319–327 (1996)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Bell, D. R., Ihinger, P. D. & Rossman, G. R. Quantitative analysis of trace OH in garnet and pyroxenes. Am. Mineral. 80, 465–474 (1995)

    ADS  CAS  Article  Google Scholar 

  41. 41

    Bell, D. R. et al. Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J. Geophys. Res. B 108, 2105–2114 (2003)

    ADS  Google Scholar 

  42. 42

    Kurosawa, M., Yurimoto, H., Matsumoto, K. & Sueno, S. in High-pressure Research: Application to Earth and Planetary Sciences (eds Syono, Y. & Manghnani, M. H.) 283–287 (Terra Scientific, 1992)

    Google Scholar 

  43. 43

    Hirth, G. & Kohlstedt, D. L. in Inside the Subduction Factory (ed. Eiler, J.) 83–106 (Geophysical Monograph Vol. 118, American Geophysical Union, 2004)

    Google Scholar 

  44. 44

    Rudnick, R. L., McDonough, W. F. & O'Connell, R. J. Thermal structure, thickness and composition of continental lithosphere. Chem. Geol. 145, 395–411 (1998)

    ADS  CAS  Article  Google Scholar 

  45. 45

    Craig, C. H. & McKenzie, D. The existence of a thin low-viscosity layer beneath the lithosphere. Earth Planet. Sci. Lett. 78, 420–426 (1986)

    ADS  Article  Google Scholar 

  46. 46

    Sjöberg, L. E., Pan, M., Asenjo, E. & Erlingsson, S. Glacial rebound near Vatnajökull, Iceland, studied by GPS campaigns in 1992 and 1996. J. Geodyn. 29, 63–70 (2000)

    Article  Google Scholar 

  47. 47

    Fleming, K., Martinec, Z. & Wolf, D. Glacial-isostatic adjustment and the viscosity structure underlying the Vatnajökull ice cap, Iceland. Pure Appl. Geophys. 164, 751–768 (2007)

    ADS  Article  Google Scholar 

  48. 48

    Pollitz, F. F., Bürgmann, R. & Romanowicz, B. Viscosity of oceanic asthenosphere inferred from remote triggering of earthquakes. Science 280, 1245–1249 (1998)

    ADS  CAS  Article  Google Scholar 

  49. 49

    Larsen, C. F. et al. Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat. Earth Planet. Sci. Lett. 237, 548–560 (2005)

    ADS  CAS  Article  Google Scholar 

Download references


We thank M. Kurosawa for providing unpublished mineral data so that we could recalculate pressure–temperature conditions for his samples. We also thank C.-T. Lee, Z.-X. A. Li, F. Niu and A. D. Brandon for discussions. Earlier versions of this manuscript were improved by the comments of D. E. James. This work was supported by NSF grant EAR0802652.

Author information




A.H.P. designed and coordinated the study, performed the analyses and interpreted the data. A.B.W., D.R.B. and M.L. contributed samples and supporting petrological information. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Anne H. Peslier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains, Supplementary Information comprising Sample selection, Results: FTIR spectra description, Results: H diffusion and a Discussion: water contents in mantle minerals. It also contains additional references, Supplementary Figures 1-5 with legends and a legend for Supplementary Table 1 (see separate file for table). (PDF 4373 kb)

Supplementary Table 1

This table shows the water content of olivines and selected chemical parameters of southern African mantle xenoliths (see Supplementary Information file page 13 for full legend). (XLS 43 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peslier, A., Woodland, A., Bell, D. et al. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature 467, 78–81 (2010).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing