Enhancement of superconductivity by pressure-driven competition in electronic order

Abstract

Finding ways to achieve higher values of the transition temperature, Tc, in superconductors remains a great challenge. The superconducting phase is often one of several competing types of electronic order, including antiferromagnetism and charge density waves1,2,3,4,5. An emerging trend documented in heavy-fermion1 and organic2 conductors is that the maximum Tc for superconductivity occurs under external conditions that cause the critical temperature for a competing order to go to zero. Recently, such competition has been found in multilayer copper oxide high-temperature superconductors (HTSCs3,4,5) that possess two crystallographically inequivalent CuO2 planes in the unit cell. However, whether the competing electronic state can be suppressed to enhance Tc in HTSCs remains an open question. Here we show that pressure-driven phase competition leads to an unusual two-step enhancement of Tc in optimally doped trilayer Bi2Sr2Ca2Cu3O10+δ (Bi2223). We find that Tc first increases with pressure and then decreases after passing through a maximum. Unexpectedly, Tc increases again when the pressure is further raised above a critical value of around 24 GPa, surpassing the first maximum. The presence of this critical pressure is a manifestation of the crossover from the competing order to superconductivity in the inner of the three CuO2 planes. We suggest that the increase at higher pressures occurs as a result of competition between pairing and phase ordering in different CuO2 planes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Magnetic susceptibility measurement set-up.
Figure 2: Magnetic susceptibility signals of Bi 2 Sr 2 Ca 2 Cu 3 O 10+ δ single crystals at various pressures.
Figure 3: Pressure dependence of Tc in optimally doped Bi2Sr2Ca2Cu3O10+ δ.
Figure 4: Raman spectra of a Bi 2 Sr 2 Ca 2 Cu 3 O 10+ δ single crystal at 33.6 GPa.

References

  1. 1

    Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Uji, S. et al. Magnetic-field-induced superconductivity in a two-dimensional organic conductor. Nature 410, 908–910 (2001)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Mori, M. & Maekawa, S. Effect of antiferromagnetic planes on the superconducting properties of multilayered high-T c cuprates. Phys. Rev. Lett. 94, 137003 (2005)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Mukuda, H. et al. Uniform mixing of high-T c superconductivity and antiferromagnetism on a single CuO2 plane of a Hg-based five-layered cuprate. Phys. Rev. Lett. 96, 087001 (2006)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Chia, E. E. et al. Observation of competing order in a high-T c superconductor using femtosecond optical pulses. Phys. Rev. Lett. 99, 147008 (2007)

    ADS  Article  Google Scholar 

  6. 6

    Chen, X. J. & Lin, H. Q. Variation of the superconducting transition temperature of hole-doped copper oxides. Phys. Rev. B 69, 104518 (2004); erratum 71, 109901 (2005)

    ADS  Article  Google Scholar 

  7. 7

    Trokiner, A. et al. 17O nuclear-magnetic-resonance evidence for distinct carrier densities in the two types of CuO2 planes of (Bi,Pb)2Sr2Ca2Cu3Oy . Phys. Rev. B 44, 2426–2429 (1991)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Statt, B. W. & Song, L. M. Screening of the middle CuO2 layer in Bi1. 6Pb0. 4Sr2Ca2Cu3O10 determined from Cu NMR. Phys. Rev. B 48, 3536–3539 (1993)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Ideta, S. et al. Enhanced superconducting gaps in the trilayer high temperature Bi2Sr2Ca2Cu3O10+δ cuprate superconductor. Phys. Rev. Lett. 104, 227001 (2010)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Chen, X. J. et al. Oxidation state of copper and superconductivity in the Hg-Ba-Cu-O system. Chem. Phys. Lett. 258, 1–5 (1996)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Chen, X. J. & Gong, C. D. Dependence of the superconducting transition temperature on the type and number of CuO2 layers in Tl2Ba2Can-1CunO2n+4-y . Phys. Rev. B 59, 4513–4523 (1999)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Gregoryanz, E. A. et al. Superconductivity in the chalcogens up to multimegabar pressures. Phys. Rev. B 65, 064504 (2002)

    ADS  Article  Google Scholar 

  13. 13

    Sadewasser, S., Schilling, J. S., Paulikas, A. P. & Veal, B. W. Pressure dependence of T c to 17 GPa with and without relaxation effects in superconducting YBa2Cu3Ox . Phys. Rev. B 61, 741–749 (2000)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Chen, X. J. et al. High-pressure phase diagram of Bi2Sr2CaCu2O8+δ single crystals. Phys. Rev. B 70, 214502 (2004)

    ADS  Article  Google Scholar 

  15. 15

    Kubiak, R. et al. Pressure dependence of the superconducting transition temperature of Bi- and Tl-based high-T c superconductors. Physica C 166, 523–529 (1990)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Gao, L. et al. Superconductivity up to 164 K in HgBa2Cam -1CumO2m+2+δ (m = 1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B 50, 4260–4263 (1994)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Berman, I. V. et al. Critical temperature of Tl2Ba2Ca2Cu3Ox at pressures of up to 190 kbar. Pis’ma Z. Eksp. Teor. Fiz. 49, 668–671 (1989)

    ADS  CAS  Google Scholar 

  18. 18

    Tristan Jover, D. et al. Pressure dependence of the superconducting critical temperature of Tl2Ba2Ca2Cu3O10+y and Tl2Ba2Ca3Cu4O12+y up to 21 GPa. Phys. Rev. B 54, 10175–10185 (1996)

    Article  Google Scholar 

  19. 19

    Zhou, X. J., Cardona, M., Colson, D. & Viallet, V. Plane oxygen vibrations and their temperature dependence in HgBa2Ca2Cu3O8+δ single crystals. Phys. Rev. B 55, 12770–12775 (1997)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Hadjiev, V. G. et al. Strong superconductivity-induced phonon self-energy effects in HgBa2Ca3Cu4O10+δ . Phys. Rev. B 58, 1043–1050 (1998)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Limonov, M., Lee, S., Tajima, S. & Yamanaka, A. Superconductivity-induced resonant Raman scattering in multilayer high-Tc superconductors. Phys. Rev. B 66, 054509 (2002)

    ADS  Article  Google Scholar 

  22. 22

    Kovaleva, N. H. et al. c-axis lattice dynamics in Bi-based cuprate superconductors. Phys. Rev. B 69, 054511 (2004)

    ADS  Article  Google Scholar 

  23. 23

    Limonov, M. F., Rykov, A. I., Tajima, S. & Yamanaka, A. Superconductivity-induced effects on phononic and electronic Raman scattering in twin-free YBa2Cu3O7-x single crystals. Phys. Rev. B 61, 12412–12419 (2000)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Feng, D. L. et al. Electronic structure of the trilayer cuprate superconductor Bi2Sr2Ca2Cu3O10+δ . Phys. Rev. Lett. 88, 107001 (2002)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Kivelson, S. A. Making high-T c higher: a theoretical proposal. Physica B 318, 61–67 (2002)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Berg, E., Orgad, D. & Kivelson, S. A. Route to high-temperature superconductivity in composite systems. Phys. Rev. B 78, 094509 (2008)

    ADS  Article  Google Scholar 

  28. 28

    Chen, X. J., Lin, H. Q. & Gong, C. D. Pressure dependence of Tc in Y-Ba-Cu-O superconductors. Phys. Rev. Lett. 85, 2180–2183 (2000)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Yuli, O. et al. Enhancement of the superconducting transition temperature of La2-xSrxCuO4 bilayers: role of pairing and phase stiffness. Phys. Rev. Lett. 101, 057005 (2008)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. R. Beasley, E. Berg, Y. Chen, C. W. Chu, R. E. Cohen, P. C. Dai, D.-L. Feng, E. Fradkin, T. Geballe, C. D. Gong, C.-Q. Jin, S. Kivelson, H.-Q. Lin, O. Millo, D. Orgad, S. Raghu, J. S. Schilling, Z.-X. Shen, L.-L. Sun, J. Tranquada, W.-F. Tsai, N.-L. Wang, H.-H. Wen, Z.-A. Xu, H. Yao, W.-G. Yin, Z.-X. Zhao and J.-X. Zhu for discussions. This work was supported by the DOE under grant no. DE-SC0001057, grant no. DE-FG02-02ER45955 and grant no. DEFC03-03NA00144, and by Carnegie Canada. X.-J.C. acknowledges financial support from the NSFC under grant no. 10874046.

Author information

Affiliations

Authors

Contributions

X.-J.C., H.-k.M. and R.J.H. initiated the program and wrote the paper; X.-J.C., Y.Y. and V.V.S. performed the magnetic susceptibility measurements; X.-J.C., A.F.G. and V.V.S performed the Raman scattering measurements; C.-T.L. synthesized the single crystals; X.-J.C., V.V.S., A.F.G., R.J.H. and H.-k.M. analysed the data and discussed the results. All the authors read and commented on the manuscript.

Corresponding authors

Correspondence to Xiao-Jia Chen or Ho-kwang Mao or Russell J. Hemley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Data, Supplementary Figures 1 - 4 with legends and References. (PDF 871 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, X., Struzhkin, V., Yu, Y. et al. Enhancement of superconductivity by pressure-driven competition in electronic order. Nature 466, 950–953 (2010). https://doi.org/10.1038/nature09293

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.