Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoscale scanning probe ferromagnetic resonance imaging using localized modes

Abstract

The discovery of new phenomena in layered and nanostructured magnetic devices is driving rapid growth in nanomagnetics research. Resulting applications such as giant magnetoresistive field sensors and spin torque devices are fuelling advances in information and communications technology, magnetoelectronic sensing and biomedicine1,2. There is an urgent need for high-resolution magnetic-imaging tools capable of characterizing these complex, often buried, nanoscale structures. Conventional ferromagnetic resonance3,4 (FMR) provides quantitative information about ferromagnetic materials and interacting multicomponent magnetic structures with spectroscopic precision and can distinguish components of complex bulk samples through their distinctive spectroscopic features. However, it lacks the sensitivity to probe nanoscale volumes and has no imaging capabilities. Here we demonstrate FMR imaging through spin-wave localization. Although the strong interactions in a ferromagnet favour the excitation of extended collective modes, we show that the intense, spatially confined magnetic field of the micromagnetic probe tip used in FMR force microscopy can be used to localize the FMR mode immediately beneath the probe. We demonstrate FMR modes localized within volumes having 200 nm lateral dimensions, and improvements of the approach may allow these dimensions to be decreased to tens of nanometres. Our study shows that this approach is capable of providing the microscopic detail required for the characterization of ferromagnets used in fields ranging from spintronics to biomagnetism. This method is applicable to buried and surface magnets, and, being a resonance technique, measures local internal fields and other magnetic properties with spectroscopic precision.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Observation and characterization of localized FMR modes.
Figure 2: Field-position FMRFM imaging of a permalloy dot using localized modes.
Figure 3: Field-position FMRFM image of a continuous permalloy film.
Figure 4: Two-dimensional x y FMRFM images of a continuous permalloy film.

References

  1. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    ADS  CAS  Article  Google Scholar 

  2. Zutić, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)

    ADS  Article  Google Scholar 

  3. Herring, C. & Kittel, C. On the theory of spin waves in ferromagnetic media. Phys. Rev. 81, 869–880 (1951)

    ADS  Article  Google Scholar 

  4. Vonsovskii, S. V. Ferromagnetic Resonance (Pergamon, 1966)

    Google Scholar 

  5. Zhang, Z., Hammel, P. C. & Wigen, P. E. Observation of ferromagnetic resonance using magnetic resonance force microscopy. Appl. Phys. Lett. 68, 2005–2007 (1996)

    ADS  CAS  Article  Google Scholar 

  6. de Loubens, G. et al. Magnetic resonance studies of the fundamental spin-wave modes in individual submicron Cu/NiFe/Cu perpendicularly magnetized disks. Phys. Rev. Lett. 98, 127601 (2007)

    ADS  CAS  Article  Google Scholar 

  7. Hammel, P. C. & Pelekhov, D. V. Handbook of Magnetism and Advanced Magnetic Materials Vol. 5, Part 4 (Wiley, 2007)

    Google Scholar 

  8. Sidles, J. A. Folded Stern-Gerlach experiment as a means for detecting nuclear magnetic resonance in individual nuclei. Phys. Rev. Lett. 68, 1124–1127 (1992)

    ADS  CAS  Article  Google Scholar 

  9. Sidles, J. A. et al. Magnetic resonance force microscopy. Rev. Mod. Phys. 67, 249–265 (1995)

    ADS  CAS  Article  Google Scholar 

  10. Rugar, D., Yannoni, C. S. & Sidles, J. A. Mechanical detection of magnetic resonance. Nature 360, 563–566 (1992)

    ADS  Article  Google Scholar 

  11. Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Sci. USA 106, 1313–1317 (2009)

    ADS  CAS  Article  Google Scholar 

  12. Jorzick, J. et al. Spin wave wells in nonellipsoidal micrometer size magnetic elements. Phys. Rev. Lett. 88, 047204 (2002)

    ADS  CAS  Article  Google Scholar 

  13. Gurevich, A. G. & Melkov, G. A. Magnetization Oscillations and Waves 199, 414 (CRC, 1996)

    Google Scholar 

  14. Slavin, A. & Tiberkevich, V. Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95, 237201 (2005)

    ADS  Article  Google Scholar 

  15. Urban, R. et al. Perturbation of magnetostatic modes observed by ferromagnetic resonance force microscopy. Phys. Rev. B 73, 212410 (2006)

    ADS  Article  Google Scholar 

  16. Obukhov, Y. et al. Local ferromagnetic resonance imaging with magnetic resonance force microscopy. Phys. Rev. Lett. 100, 197601 (2008)

    ADS  Article  Google Scholar 

  17. Obukhov, Y., Pelekhov, D. V., Nazaretski, E., Movshovich, R. & Hammel, P. C. Effect of localized magnetic field on the uniform ferromagnetic resonance mode in a thin film. Appl. Phys. Lett. 94, 172508 (2009)

    ADS  Article  Google Scholar 

  18. Damon, R. W. & van de Vaart, H. Propagation of magnetostatic spin waves at microwave frequencies in a normally-magnetized disk. J. Appl. Phys. 36, 3453 (1965)

    ADS  CAS  Article  Google Scholar 

  19. Yukawa, T. & Abe, K. FMR spectrum of magnetostatic waves in a normally magnetized YIG disk. J. Appl. Phys. 45, 3146 (1974)

    ADS  CAS  Article  Google Scholar 

  20. Schlömann, E. Generation of spin waves in nonuniform magnetic fields. I. Conversion of electromagnetic power into spin-wave power and vice versa. J. Appl. Phys. 35, 159–166 (1964)

    ADS  Article  Google Scholar 

  21. Kakazei, G. N. et al. Spin-wave spectra of perpendicularly magnetized circular submicron dot arrays. Appl. Phys. Lett. 85, 443–445 (2004)

    ADS  CAS  Article  Google Scholar 

  22. Mewes, T. et al. Ferromagnetic resonance force microscopy studies of arrays of micron size permalloy dots. Phys. Rev. B 74, 144424 (2006)

    ADS  Article  Google Scholar 

  23. Kalinikos, B. A. & Slavin, A. N. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C 19, 7013–7033 (1986)

    ADS  Article  Google Scholar 

  24. Klein, O. et al. Ferromagnetic resonance force spectroscopy of individual submicron-size samples. Phys. Rev. B 78, 144410 (2008)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the US Department of Energy through grant no. DE-FG02-03ER46054.

Author information

Authors and Affiliations

Authors

Contributions

I.L. and Y.O. collected data; I.L., Y.O., D.V.P. and P.C.H. analysed data; G.X., F.Y., A.H., P.B. and D.V.P. fabricated samples and micromagnetic probe tips; and I.L., Y.O., D.V.P. and P.C.H. wrote the manuscript.

Corresponding author

Correspondence to P. Chris Hammel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Information, References and Supplementary Figure 1 and legend. (PDF 525 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, I., Obukhov, Y., Xiang, G. et al. Nanoscale scanning probe ferromagnetic resonance imaging using localized modes. Nature 466, 845–848 (2010). https://doi.org/10.1038/nature09279

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09279

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing