Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Start/stop signals emerge in nigrostriatal circuits during sequence learning


Learning new action sequences subserves a plethora of different abilities such as escaping a predator, playing the piano, or producing fluent speech. Proper initiation and termination of each action sequence is critical for the organization of behaviour, and is compromised in nigrostriatal disorders like Parkinson’s and Huntington’s diseases. Using a self-paced operant task in which mice learn to perform a particular sequence of actions to obtain an outcome, we found neural activity in nigrostriatal circuits specifically signalling the initiation or the termination of each action sequence. This start/stop activity emerged during sequence learning, was specific for particular actions, and did not reflect interval timing, movement speed or action value. Furthermore, genetically altering the function of striatal circuits disrupted the development of start/stop activity and selectively impaired sequence learning. These results have important implications for understanding the functional organization of actions and the sequence initiation and termination impairments observed in basal ganglia disorders.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mice learn to perform a specific sequence of actions.
Figure 2: Lever-press-related activity in nigrostriatal circuits.
Figure 3: Neural activity signalling the initiation and termination of action sequences emerges in nigrostriatal circuits during learning.
Figure 4: Sequence start/stop-related activity does not reflect differences in expected value and can be action specific.
Figure 5: Striatal-specific deletion of NMDA receptors disrupts the development of start/stop activity and impairs sequence learning.


  1. 1

    Lashley, K. S. in Cerebral Mechanisms in Behavior (ed. Jeffress, L. A.) (John Wiley, 1951)

    Google Scholar 

  2. 2

    Gallistel, C. R. The Organization of Action: A New Synthesis (Lawrence Erlbaum Associates, 1980)

    Google Scholar 

  3. 3

    Grillner, S. & Wallén, P. Central pattern generators for locomotion, with special reference to vertebrates. Annu. Rev. Neurosci. 8, 233–261 (1985)

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Marder, E. & Bucher, D. Central pattern generators and the control of rhythmic movements. Curr. Biol. 11, R986–R996 (2001)

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Hikosaka, O. et al. Parallel neural networks for learning sequential procedures. Trends Neurosci. 22, 464–471 (1999)

    CAS  Article  Google Scholar 

  6. 6

    Yin, H. H. et al. Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nature Neurosci. 12, 333–341 (2009)

    CAS  Article  Google Scholar 

  7. 7

    Graybiel, A. M. The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70, 119–136 (1998)

    CAS  Article  Google Scholar 

  8. 8

    Hikosaka, O., Miyashita, K., Miyachi, S., Sakai, K. & Lu, X. Differential roles of the frontal cortex, basal ganglia, and cerebellum in visuomotor sequence learning. Neurobiol. Learn. Mem. 70, 137–149 (1998)

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Bailey, K. R. & Mair, R. G. The role of striatum in initiation and execution of learned action sequences in rats. J. Neurosci. 26, 1016–1025 (2006)

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Benecke, R., Rothwell, J. C., Dick, J. P., Day, B. L. & Marsden, C. D. Disturbance of sequential movements in patients with Parkinson’s disease. Brain 110, 361–379 (1987)

    Article  PubMed  Google Scholar 

  11. 11

    Agostino, R., Berardelli, A., Formica, A., Accornero, N. & Manfredi, M. Sequential arm movements in patients with Parkinson’s disease, Huntington’s disease and dystonia. Brain 115, 1481–1495 (1992)

    Article  PubMed  Google Scholar 

  12. 12

    Castiello, U., Stelmach, G. E. & Lieberman, A. N. Temporal dissociation of the prehension pattern in Parkinson’s disease. Neuropsychologia 31, 395–402 (1993)

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Phillips, J. G., Chiu, E., Bradshaw, J. L. & Iansek, R. Impaired movement sequencing in patients with Huntington’s disease: a kinematic analysis. Neuropsychologia 33, 365–369 (1995)

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Willingham, D. B. & Koroshetz, W. J. Evidence for dissociable motor skills in Huntington’s disease patients. Psychobiology 21, 173–182 (1993)

    Google Scholar 

  15. 15

    Stefanova, E. D., Kostic, V. S., Ziropadja, L., Markovic, M. & Ocic, G. G. Visuomotor skill learning on serial reaction time task in patients with early Parkinson’s disease. Mov. Disord. 15, 1095–1103 (2000)

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Boyd, L. A. et al. Motor sequence chunking is impaired by basal ganglia stroke. Neurobiol. Learn. Mem. 92, 35–44 (2009)

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Fujii, N. & Graybiel, A. M. Representation of action sequence boundaries by macaque prefrontal cortical neurons. Science 301, 1246–1249 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  18. 18

    Aldridge, J. W. & Berridge, K. C. Coding of serial order by neostriatal neurons: a “natural action” approach to movement sequence. J. Neurosci. 18, 2777–2787 (1998)

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Meyer-Luehmann, M., Thompson, J. F., Berridge, K. C. & Aldridge, J. W. Substantia nigra pars reticulata neurons code initiation of a serial pattern: implications for natural action sequences and sequential disorders. Eur. J. Neurosci. 16, 1599–1608 (2002)

    Article  PubMed  Google Scholar 

  20. 20

    Dang, M. T. et al. Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum. Proc. Natl Acad. Sci. USA 103, 15254–15259 (2006)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Gong, S. et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J. Neurosci. 27, 9817–9823 (2007)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 8, 1263–1268 (2005)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Lima, S. Q., Hromadka, T., Znamenskiy, P. & Zador, A. M. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS ONE 4 e6099 10.1371/journal.pone.0006099 (2009)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Meck, W. H., Penney, T. B. & Pouthas, V. Cortico-striatal representation of time in animals and humans. Curr. Opin. Neurobiol. 18, 145–152 (2008)

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Representation of action-specific reward values in the striatum. Science 310, 1337–1340 (2005)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Lau, B. & Glimcher, P. W. Value representations in the primate striatum during matching behavior. Neuron 58, 451–463 (2008)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Morris, G., Nevet, A., Arkadir, D., Vaadia, E. & Bergman, H. Midbrain dopamine neurons encode decisions for future action. Nature Neurosci. 9, 1057–1063 (2006)

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Roesch, M. R., Calu, D. J. & Schoenbaum, G. Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nature Neurosci. 10, 1615–1624 (2007)

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Calabresi, P., Pisani, A., Mercuri, N. B. & Bernardi, G. Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels. Eur. J. Neurosci. 4, 929–935 (1992)

    Article  Google Scholar 

  30. 30

    Shen, W., Flajolet, M., Greengard, P. & Surmeier, D. J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–851 (2008)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Pomata, P. E., Belluscio, M. A., Riquelme, L. A. & Murer, M. G. NMDA receptor gating of information flow through the striatum in vivo . J. Neurosci. 28, 13384–13389 (2008)

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Brainard, M. S. & Doupe, A. J. What songbirds teach us about learning. Nature 417, 351–358 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  33. 33

    Kimura, M. Behaviorally contingent property of movement-related activity of the primate putamen. J. Neurophysiol. 63, 1277–1296 (1990)

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Kermadi, I. & Joseph, J. P. Activity in the caudate nucleus of monkey during spatial sequencing. J. Neurophysiol. 74, 911–933 (1995)

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Jog, M. S., Kubota, Y., Connolly, C. I., Hillegaart, V. & Graybiel, A. M. Building neural representations of habits. Science 286, 1745–1749 (1999)

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Miyachi, S., Hikosaka, O. & Lu, X. Differential activation of monkey striatal neurons in the early and late stages of procedural learning. Exp. Brain Res. 146, 122–126 (2002)

    Article  Google Scholar 

  37. 37

    Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997)

    CAS  Article  Google Scholar 

  38. 38

    Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007)

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Redgrave, P. & Gurney, K. The short-latency dopamine signal: a role in discovering novel actions? Nature Rev. Neurosci. 7, 967–975 (2006)

    CAS  Article  Google Scholar 

  40. 40

    Hilário, M. R. F., Clouse, E., Yin, H. H. & Costa, R. M. Endocannabinoid signaling is critical for habit formation. Front. Integr. Neurosci. 1, 6 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

Download references


We thank Y. Li for the RGS9-Cre mice, C. Gerfen for the TH-Cre mice, K. Nakazawa for the NMDAR1-loxP mice, F. Tecuapetla and S. Lima for help in the optogenetics experiment, G. Luo for genotyping, and D. Lovinger, G. Cui, C. French, C. Gremel and E. Dias-Ferreira for comments on the manuscript. This research was supported by the NIAAA Division of Intramural Clinical and Biological Research, the Champalimaud Neuroscience Programme at Institute Gulbenkian de Ciência and European Research Council Grant 243393 to R.M.C.

Author information




X.J. performed the experiments and analysed the data. R.M.C. conducted the optogenetics experiment. X.J. and R.M.C. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Rui M. Costa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, References, Supplementary Statistics for Figures 1-5 in the main paper, Supplementary Figures 1-18 with legends and Supplementary Tables 1-2. (PDF 1412 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jin, X., Costa, R. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466, 457–462 (2010).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing