Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Triggering of New Madrid seismicity by late-Pleistocene erosion


The spatiotemporal behaviour of earthquakes within continental plate interiors is different from that at plate boundaries. At plate margins, tectonic motions quickly reload earthquake ruptures, making the location of recent earthquakes and the average time between them consistent with the faults’ geological, palaeoseismic and seismic histories. In contrast, what determines the activation of a particular mid-continental fault and controls the duration of its seismic activity remains poorly understood1. Here we argue that the concentration of magnitude-7 or larger earthquakes in the New Madrid seismic zone of the central United States2,3 since the end of the last ice age results from the recent, climate-controlled, erosional history of the northern Mississippi embayment. We show that the upward flexure of the lithosphere caused by unloading from river incision between 16,000 and 10,000 years ago caused a reduction of normal stresses in the upper crust sufficient to unclamp pre-existing faults close to failure equilibrium. Models indicate that fault segments that have already ruptured are unlikely to fail again soon, but stress changes from sediment unloading and previous earthquakes may eventually be sufficient to bring to failure other nearby segments that have not yet ruptured.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Current seismicity of the NMSZ.
Figure 2: Late-Pleistocene sedimentary history.
Figure 3: Horizontal stress changes due to flexure.
Figure 4: Effect of rheology and unloading history.


  1. 1

    Crone, A. J., De Martini, P. M., Machette, M. N., Okumura, K. & Prescott, J. R. Paleoseismicity of two historically quiescent faults in Australia: implications for fault behavior in stable continental regions. Bull. Seismol. Soc. Am. 93, 1913–1934 (2003)

    Article  Google Scholar 

  2. 2

    Johnston, A. C. Seismic moment assessment of earthquakes in stable continental regions. III. New Madrid 1811–1812, Charleston 1886, and Lisbon 1755. Geophys. J. Int. 126, 314–344 (1996)

    ADS  Article  Google Scholar 

  3. 3

    Hough, S. E., Armbuster, J. G., Seeber, L. & Hough, J. F. On the modified Mercalli intensities and magnitudes of the 1811–1812 New Madrid earthquakes. J. Geophys. Res. 105, 23839–23864 (2000)

    ADS  Article  Google Scholar 

  4. 4

    Tuttle, M. et al. The earthquake potential of the New Madrid seismic zone. Bull. Seismol. Soc. Am. 92, 2080–2089 (2002)

    Article  Google Scholar 

  5. 5

    Newman, A. et al. Slow deformation and lower seismic hazard at the New Madrid seismic zone. Science 284, 619–621 (1999)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Calais, E. & Stein, S. Time-variable deformation in the New Madrid seismic zone. Science 323, 1442 (2009)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Van Arsdale, R. B. Displacement history and slip rate on the Reelfoot fault of the New Madrid seismic zone. Eng. Geol. 55, 219–226 (2000)

    Article  Google Scholar 

  8. 8

    Calais, E., Han, J. Y., DeMets, C. & Nocquet, J. M. Deformation of the North American plate interior from a decade of continuous GPS measurements. J. Geophys. Res. 111, B06402 (2006)

    ADS  Article  Google Scholar 

  9. 9

    Grollimund, B. & Zoback, M. D. Did deglaciation trigger intraplate seismicity in the New Madrid seismic zone? Geology 29, 175–178 (2001)

    ADS  Article  Google Scholar 

  10. 10

    Wu, P. & Johnston, P. Can deglaciation trigger earthquakes in North America? Geophys. Res. Lett. 27, 1323–1326 (2000)

    ADS  Article  Google Scholar 

  11. 11

    McKenna, J., Stein, S. & Stein, C. A. Is the New Madrid seismic zone hotter and weaker than its surroundings? Spec. Pap. Geol. Soc. Am. 425, 167–175 (2007)

    Google Scholar 

  12. 12

    Grana, J. P. & Richardson, R. M. Tectonic stress within the New Madrid seismic zone. J. Geophys. Res. 101, 5445–5458 (1996)

    ADS  Article  Google Scholar 

  13. 13

    Pollitz, F. F., Kellogg, L. & Burgmann, R. Sinking mafic body in a reactivated lower crust: a mechanism for stress concentration at the New Madrid seismic zone. Bull. Seismol. Soc. Am. 91, 1882–1897 (2001)

    Article  Google Scholar 

  14. 14

    Kenner, S. J. & Segall, P. A mechanical model for intraplate earthquakes: application to the New Madrid seismic zone. Science 289, 2329–2332 (2000)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Van Arsdale, R., Bresnahan, R., McCallister, N. & Waldron, B. Upland Complex of the central Mississippi River valley: its origin, denudation, and possible role in reactivation of the New Madrid seismic zone. Geol. Soc. Am. Spec. Pap. 425, 77–192 (2007)

    Google Scholar 

  16. 16

    Rittenour, T. M., Blum, M. D. & Goble, R. J. Fluvial evolution of the lower Mississippi River valley during the last 100 k.y. glacial cycle: response to glaciations and sea-level change. Geol. Soc. Am. Bull. 119, 586–608 (2007)

    ADS  Article  Google Scholar 

  17. 17

    Mueller, K., Hough, S. E. & Bilham, R. Analysing the 1811–1812 New Madrid earthquakes with recent instrumentally recorded aftershocks. Nature 429, 284–287 (2004)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Freed, A. M. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci. 33, 335–367 (2005)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Townend, J. & Zoback, M. D. How faulting keeps the crust strong. Geology 28, 399–402 (2000)

    ADS  Article  Google Scholar 

  20. 20

    Baldwin, J. N. et al. Constraints on the location of the late Quaternary Reelfoot and New Madrid North faults in the northern New Madrid seismic zone, central United States. Seismol. Res. Lett. 6, 772–789 (2005)

    Article  Google Scholar 

  21. 21

    Guccione, M. J., Marple, R. & Autin, W. J. Evidence for Holocene displacements on the Bootheel fault (lineament) in southeastern Missouri: seismotectonic implications for the New Madrid region. Geol. Soc. Am. Bull. 117, 319–0333 (2005)

    ADS  Article  Google Scholar 

  22. 22

    Cox, R. T., Harris, J., Larsen, J. B., Van Arsdale, R. B. & Forman, S. L. Paleoseismology of the southeastern Reelfoot Rift in western Tennessee and implications for intraplate fault zone evolution. Tectonics 25, TC3019 (2006)

    ADS  Article  Google Scholar 

  23. 23

    Freed, A. M., Ali, S. T. & Bürgmann, R. Evolution of stress in Southern California for the past 200 years from coseismic, postseismic and interseismic stress changes. Geophys. J. Int. 169, 1164–1179 (2007)

    ADS  Article  Google Scholar 

  24. 24

    Freed, A. M., Bürgmann, R., Calais, E., Freymueller, J. & Hreinsdottir, S. Implications of deformation following the 2002 Denali, Alaska, earthquake for postseismic relaxation processes and lithospheric rheology. J. Geophys. Res. 111, B01401 (2006)

    ADS  Article  Google Scholar 

  25. 25

    Allmann, B. P. & Shearer, P. M. Global variations of stress drop for moderate to large earthquakes. J. Geophys. Res. 114, B01310 (2009)

    ADS  Article  Google Scholar 

  26. 26

    Li, Q., Liu, M. & Stein, S. Spatial-temporal complexity of continental intraplate seismicity: insights from geodynamic modeling and implications for seismic hazard estimation. Bull. Seismol. Soc. Am. 99, 52–60 (2009)

    Article  Google Scholar 

  27. 27

    Karato, S. I. in Earth’s Deep Interior (ed. Croosley, D.) 223–272 (Gordon and Breach, 1997)

    Google Scholar 

  28. 28

    Carter, N. L. & Tsenn, M. C. Flow properties of continental lithosphere. Tectonophysics 136, 27–63 (1987)

    ADS  Article  Google Scholar 

  29. 29

    Kirby, S. H. & Kronenberg, A. K. Rheology of the lithosphere; selected topics. Rev. Geophys. 25, 1219–1244 (1987)

    ADS  Article  Google Scholar 

  30. 30

    Liu, L. & Zoback, M. D. Lithospheric strength and intraplate seismicity in the New Madrid seismic zone. Tectonics 16, 585–595 (1997)

    ADS  Article  Google Scholar 

Download references


This work was partly supported by the US Geological Survey through the Department of the Interior, under USGS award number 07HQGR0049. We thank M. Zoback for his comments.

Author information




E.C. designed the study and prepared the main manuscript, with contributions from all co-authors. A.M.F. performed the modelling tasks and wrote Methods. R.V.A. provided the geological information. S.S. provided background context for the study. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to E. Calais.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables S1-S2, Supplementary Figures S1-S3 with legends and References. (PDF 221 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Calais, E., Freed, A., Van Arsdale, R. et al. Triggering of New Madrid seismicity by late-Pleistocene erosion. Nature 466, 608–611 (2010).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing