Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum entanglement between an optical photon and a solid-state spin qubit


Quantum entanglement is among the most fascinating aspects of quantum theory1. Entangled optical photons are now widely used for fundamental tests of quantum mechanics2 and applications such as quantum cryptography1. Several recent experiments demonstrated entanglement of optical photons with trapped ions3, atoms4,5 and atomic ensembles6,7,8, which are then used to connect remote long-term memory nodes in distributed quantum networks9,10,11. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique5,12, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks13,14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for spin-photon entanglement.
Figure 2: Characterization of NV centres.
Figure 3: Experimental procedure for entanglement generation.
Figure 4: Measurement of spin-photon correlations in two bases.

Similar content being viewed by others


  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000)

    MATH  Google Scholar 

  2. Aspect, A., Grangier, P. & Roger, G. Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: a new violation of Bell's inequalities. Phys. Rev. Lett. 49, 91–94 (1982)

    Article  ADS  Google Scholar 

  3. Blinov, B. B., Moehring, D. L., Duan, L. M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Volz, J. et al. Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006)

    Article  ADS  Google Scholar 

  5. Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-atom single-photon quantum interface. Science 317, 488–490 (2007)

    Article  ADS  CAS  Google Scholar 

  6. Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Matsukevich, D. et al. Entanglement of a photon and a collective atomic excitation. Phys. Rev. Lett. 95, 040405 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Cabrillo, C., Cirac, J. I., Garcia-Fernandez, P. & Zoller, P. Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Scully, M. O. & Drühl, K. Quantum eraser: a proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics. Phys. Rev. A 25, 2208–2213 (1982)

    Article  ADS  CAS  Google Scholar 

  13. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Childress, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Duan, L.-M. & Monroe, C. Robust quantum information processing with atoms, photons, and atomic ensembles. Adv. At. Mol. Opt. Phys. 55, 419–464 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008)

    Article  ADS  CAS  Google Scholar 

  17. Ansmann, M. et al. Violation of Bell's inequality in Josephson phase qubits. Nature 461, 504–506 (2009)

    Article  ADS  CAS  Google Scholar 

  18. DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009)

    Article  ADS  CAS  Google Scholar 

  19. de Riedmatten, H., Afzelius, M., Staudt, M. U., Simon, C. & Gisin, N. A solid-state light-matter interface at the single-photon level. Nature 456, 773 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009)

    Article  ADS  CAS  Google Scholar 

  21. Fuchs, G. D., Dobrovitski, V. V., Toyli, D. M., Heremans, F. J. & Awschalom, D. D. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009)

    Article  ADS  CAS  Google Scholar 

  22. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007)

    Article  Google Scholar 

  23. Tamarat, P. et al. Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond. N. J. Phys. 10, 045004 (2008)

    Article  Google Scholar 

  24. Manson, N., Harrison, J. & Sellars, M. Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006)

    Article  ADS  Google Scholar 

  25. Santori, C. et al. Coherent population trapping of single spins in diamond under optical excitation. Phys. Rev. Lett. 97, 247401 (2006)

    Article  ADS  Google Scholar 

  26. Kaiser, F. et al. Polarization properties of single photons emitted by nitrogen-vacancy defect in diamond at low temperature. 〈〉 (2009)

  27. Englund, D., Faraon, A., Fushman, I., Stoltz, N. & Petroff, P. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007)

    Article  ADS  CAS  Google Scholar 

  28. Schietinger, S., Schröder, T. & Benson, O. One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator. Nano Lett. 8, 3911–3915 (2008)

    Article  ADS  CAS  Google Scholar 

  29. Wang, C. F. et al. Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond. Appl. Phys. Lett. 91, 201112 (2007)

    Article  ADS  Google Scholar 

  30. Fleischhauer, M., Imamoğlu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Article  ADS  CAS  Google Scholar 

Download references


We thank F. Jelezko, J. Wrachtrup, V. Jacques, N. Manson, J. Taylor and J. MacArthur for discussions and experimental help. This work was supported by the Defense Advanced Research Projects Agency, NSF, Harvard-MIT CUA, the NDSEG Fellowship and the Packard Foundation. The content of the information does not necessarily reflect the position or the policy of the US Government, and no official endorsements should be inferred.

Author information

Authors and Affiliations



All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to M. D. Lukin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains 1 Supplementary Methods, 2 Level structure and polarization properties of the NV centre, 3 Spin readout, 4 Verification of polarization selection rules for A2 state, 5 Effects of magnetic environment, detunings, and echo, 6 Fidelity estimates, Supplementary Figures S1-S7 with legends and References. (PDF 1003 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Togan, E., Chu, Y., Trifonov, A. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing