Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Wnt11 patterns a myocardial electrical gradient through regulation of the L-type Ca2+ channel

Abstract

Electrical gradients are critical for many biological processes, including the normal function of excitable tissues, left–right patterning, organogenesis and wound healing1,2,3,4. The fundamental mechanisms that regulate the establishment and maintenance of such electrical polarities are poorly understood. Here we identify a gradient of electrical coupling across the developing ventricular myocardium using high-speed optical mapping of transmembrane potentials and calcium concentrations in the zebrafish heart. We excluded a role for differences in cellular excitability, connexin localization, tissue geometry and mechanical inputs, but in contrast we were able to demonstrate that non-canonical Wnt11 signals are required for the genesis of this myocardial electrical gradient. Although the traditional planar cell polarity pathway is not involved, we obtained evidence that Wnt11 acts to set up this gradient of electrical coupling through effects on transmembrane Ca2+ conductance mediated by the L-type calcium channel. These data reveal a previously unrecognized role for Wnt/Ca2+ signalling in establishing an electrical gradient in the plane of the developing cardiac epithelium through modulation of ion-channel function. The regulation of cellular coupling through such mechanisms may be a general property of non-canonical Wnt signals.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Formation of a myocardial electrical gradient in the developing zebrafish ventricle.
Figure 2: Loss of Wnt11 prevents myocardial electrical gradient formation.
Figure 3: Wnt11 regulates Ca 2+ transient amplitudes in cardiomyocytes.
Figure 4: Wnt11 patterns electrical coupling through effects on transmembrane Ca 2+ conductance.

References

  1. Costantini, D. L. et al. The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 123, 347–358 (2005)

    CAS  Article  Google Scholar 

  2. Yao, L., McCaig, C. D. & Zhao, M. Electrical signals polarize neuronal organelles, direct neuron migration, and orient cell division. Hippocampus 19, 855–868 (2009)

    CAS  Article  Google Scholar 

  3. Adams, D. S. et al. Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development 133, 1657–1671 (2006)

    CAS  Article  Google Scholar 

  4. Zhao, M. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442, 457–460 (2006)

    ADS  CAS  Article  Google Scholar 

  5. Watanabe, T., Delbridge, L. M., Bustamante, J. O. & McDonald, T. F. Heterogeneity of the action potential in isolated rat ventricular myocytes and tissue. Circ. Res. 52, 280–290 (1983)

    CAS  Article  Google Scholar 

  6. Milan, D. J., Giokas, A. C., Serluca, F. C., Peterson, R. T. & MacRae, C. A. Notch1b and neuregulin are required for specification of central cardiac conduction tissue. Development 133, 1125–1132 (2006)

    CAS  Article  Google Scholar 

  7. Chi, N. C. et al. Genetic and physiologic dissection of the vertebrate cardiac conduction system. PLoS Biol. 6, e109 (2008)

    Article  Google Scholar 

  8. Hoyt, R. H., Cohen, M. L. & Saffitz, J. E. Distribution and three-dimensional structure of intercellular junctions in canine myocardium. Circ. Res. 64, 563–574 (1989)

    CAS  Article  Google Scholar 

  9. Chung, C. Y., Bien, H. & Entcheva, E. The role of cardiac tissue alignment in modulating electrical function. J. Cardiovasc. Electrophysiol. 18, 1323–1329 (2007)

    Article  Google Scholar 

  10. Auman, H. J. et al. Functional modulation of cardiac form through regionally confined cell shape changes. PLoS Biol. 5, e53 (2007)

    Article  Google Scholar 

  11. Sehnert, A. J. et al. Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nature Genet. 31, 106–110 (2002)

    CAS  Article  Google Scholar 

  12. Etard, C. et al. The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90a during myofibrillogenesis. Dev. Biol. 308, 133–143 (2007)

    CAS  Article  Google Scholar 

  13. Cohen, E. D., Tian, Y. & Morrisey, E. E. Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal. Development 135, 789–798 (2008)

    CAS  Article  Google Scholar 

  14. Eisenberg, C. A. & Eisenberg, L. M. WNT11 promotes cardiac tissue formation of early mesoderm. Dev. Dyn. 216, 45–58 (1999)

    CAS  Article  Google Scholar 

  15. Pandur, P., Lasche, M., Eisenberg, L. M. & Kuhl, M. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418, 636–641 (2002)

    ADS  CAS  Article  Google Scholar 

  16. Zhou, W. et al. Modulation of morphogenesis by noncanonical Wnt signaling requires ATF/CREB family-mediated transcriptional activation of TGFbeta2. Nature Genet. 39, 1225–1234 (2007)

    CAS  Article  Google Scholar 

  17. Flaherty, M. P. & Dawn, B. Noncanonical Wnt11 signaling and cardiomyogenic differentiation. Trends Cardiovasc. Med. 18, 260–268 (2008)

    CAS  Article  Google Scholar 

  18. Thisse, C. & Thisse, B. High throughput expression analysis of ZF-models consortium clones. ZFIN Direct Data Submission ZDB-PUB-051025-1 〈http://zfin.org/cgi-bin/webdriver?MIval=aa-pubview2apg&OID=ZDB-PUB-051025-1〉 (2005)

    Google Scholar 

  19. Robu, M. E. et al. p53 activation by knockdown technologies. PLoS Genet. 3, e78 (2007)

    Article  Google Scholar 

  20. Yao, S. et al. Pnas4 is a novel regulator for convergence and extension during vertebrate gastrulation. FEBS Lett. 582, 2325–2332 (2008)

    CAS  Article  Google Scholar 

  21. Heisenberg, C. P. et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76–81 (2000)

    ADS  CAS  Article  Google Scholar 

  22. Veeman, M. T., Axelrod, J. D. & Moon, R. T. A second canon. Dev. Cell 5, 367–377 (2003)

    CAS  Article  Google Scholar 

  23. Jessen, J. R. et al. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nature Cell Biol. 4, 610–615 (2002)

    CAS  Article  Google Scholar 

  24. Veeman, M. T., Slusarski, D. C., Kaykas, A., Louie, S. H. & Moon, R. T. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr. Biol. 13, 680–685 (2003)

    CAS  Article  Google Scholar 

  25. Slusarski, D. C., Corces, V. G. & Moon, R. T. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390, 410–413 (1997)

    ADS  CAS  Article  Google Scholar 

  26. Bers, D. M. Calcium cycling and signaling in cardiac myocytes. Annu. Rev. Physiol. 70, 23–49 (2008)

    CAS  Article  Google Scholar 

  27. Stainier, D. Y. et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123, 285–292 (1996)

    CAS  PubMed  Google Scholar 

  28. Witzel, S., Zimyanin, V., Carreira-Barbosa, F., Tada, M. & Heisenberg, C. P. Wnt11 controls cell contact persistence by local accumulation of Frizzled 7 at the plasma membrane. J. Cell Biol. 175, 791–802 (2006)

    CAS  Article  Google Scholar 

  29. Rottbauer, W. et al. Reptin and pontin antagonistically regulate heart growth in zebrafish embryos. Cell 111, 661–672 (2002)

    CAS  Article  Google Scholar 

  30. Angers, S. & Moon, R. T. Proximal events in Wnt signal transduction. Nature Rev. Mol. Cell Biol. 10, 468–477 (2009)

    CAS  Article  Google Scholar 

  31. Loew, L. M. et al. A naphtyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations. J. Membr. Biol. 130, 1–10 (1992)

    CAS  Article  Google Scholar 

  32. Fast, V. G. & Kleber, A. G. Microscopic conduction in cultured strands of neonatal rat heart cells measured with voltage-sensitive dyes. Circ. Res. 73, 914–925 (1993)

    CAS  Article  Google Scholar 

  33. Rohr, S. & Salzberg, B. M. Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: assessing electrical behaviour, with microsecond resolution, on a cellular and subcellular scale. Biophys. J. 67, 1301–1315 (1994)

    ADS  CAS  Article  Google Scholar 

  34. Girouard, S. D., Laurita, K. R. & Rosenbaum, D. S. Unique properties of cardiac action potentials recorded with voltage-sensitive dyes. J. Cardiovasc. Electrophysiol. 7, 1024–1038 (1996)

    CAS  Article  Google Scholar 

  35. Rohr, S. & Kucera, J. P. Optical recording system based on a fiber optic image conduit: assessment of microscopic activation patterns in cardiac tissue. Biophys. J. 75, 1062–1075 (1998)

    ADS  CAS  Article  Google Scholar 

  36. Windisch, H. in Optical Mapping of Cardiac Excitation and Arrhythmias (eds Rosenbaum, D. S. & Jalife, J.) 97–112 (Futura, 2001)

    Google Scholar 

  37. Milan, D. J., Jones, I. L., Ellinor, P. T. & MacRae, C. A. In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. Am. J. Physiol. Heart Circ. Physiol. 291, H269–H273 (2006)

    CAS  Article  Google Scholar 

  38. Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464, 601–605 (2010)

    ADS  CAS  Article  Google Scholar 

  39. Fast, V. G. & Kleber, A. G. Cardiac tissue geometry as a determinant of unidirectional conduction block: assessment of microscopic excitation spread by optical mapping in patterned cell cultures and in a computer model. Cardiovasc. Res. 29, 697–707 (1995)

    CAS  Article  Google Scholar 

  40. Bayly, P. V. et al. Estimation of conduction velocity vector fields from epicardial mapping data. IEEE Trans. Biomed. Eng. 45, 563–571 (1998)

    CAS  Article  Google Scholar 

  41. Eloff, B. C. et al. High resolution optical mapping reveals conduction slowing in connexin43 deficient mice. Cardiovasc. Res. 51, 681–690 (2001)

    CAS  Article  Google Scholar 

  42. Mills, R. W., Narayan, S. M. & McCulloch, A. D. Mechanisms of conduction slowing during myocardial stretch by ventricular volume loading in the rabbit. Am. J. Physiol. Heart Circ. Physiol. 295, H1270–H1278 (2008)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank C. P. Heisenberg, L. Solnica-Krezel and J. Mably for the gift of reagents. We thank R. Peterson and I. Drummond for comments on the manuscript. D.P. is supported by a fellowship from the HFSP. A.A.W. was supported by an NIH training award to the CVRC at MGH. C.A.M. is supported by the March of Dimes and the NIH.

Author information

Authors and Affiliations

Authors

Contributions

D.P. designed and performed the genetic, immunohistochemical and optical mapping experiments; A.A.W. devised techniques for optical voltage mapping and ratiometric Ca2+ imaging, developed analysis software, and designed and performed the corresponding experiments; C.A.M. designed the experimental strategy. D.P., A.A.W. and C.A.M. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Calum A. MacRae.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-7 with legends. (PDF 443 kb)

Supplementary Movie 1

This movie shows the action potential propagation in wild type linear heart tube at 24 hpf. Action potential propagation is slow and homogeneous. (MOV 9122 kb)

Supplementary Movie 2

This movie shows the action potential propagation in wild type heart at 72 hpf, after looping is complete. (MOV 3892 kb)

Supplementary Movie 3

This movie shows the action potential propagation in a heart from Wnt11 morphant embryos at 72 hpf. (MOV 2855 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Panáková, D., Werdich, A. & MacRae, C. Wnt11 patterns a myocardial electrical gradient through regulation of the L-type Ca2+ channel. Nature 466, 874–878 (2010). https://doi.org/10.1038/nature09249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09249

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing