Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Epigenetics as a unifying principle in the aetiology of complex traits and diseases

Abstract

Epigenetic modifications of DNA and histones might be crucial for understanding the molecular basis of complex phenotypes. One reason for this is that epigenetic factors are sometimes malleable and plastic enough to react to cues from the external and internal environments. Such induced epigenetic changes can be solidified and propagated during cell division, resulting in permanent maintenance of the acquired phenotype. In addition, the finding that there is partial epigenetic stability in somatic and germline cells allows insight into the molecular mechanisms of heritability. Epigenetics can provide a new framework for the search of aetiological factors in complex traits and diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Twin-based epigenetic heritability.
Figure 2: Epigenetic interpretation of cases of sporadic disease and familial disease.

Similar content being viewed by others

References

  1. Hemminki, K., Lorenzo Bermejo, J. & Forsti, A. The balance between heritable and environmental aetiology of human disease. Nature Rev. Genet. 7, 958–965 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Taubes, G. Epidemiology faces its limits. Science 269, 164–169 (1995).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  3. Austin, J. Schizophrenia: an update and review. J. Genet. Couns. 14, 329–340 (2005).

    Article  PubMed  Google Scholar 

  4. Kendler, K. S. & Baker, J. H. Genetic influences on measures of the environment: a systematic review. Psychol. Med. 37, 615–626 (2007).

    Article  PubMed  Google Scholar 

  5. Alberg, A. J. & Samet, J. M. Epidemiology of lung cancer. Chest 123, 21S–49S (2003).

    Article  PubMed  Google Scholar 

  6. Kendler, K. S., Thornton, L. M. & Pedersen, N. L. Tobacco consumption in Swedish twins reared apart and reared together. Arch. Gen. Psychiatry 57, 886–892 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Kendler, K. S. & Karkowski-Shuman, L. Stressful life events and genetic liability to major depression: genetic control of exposure to the environment? Psychol. Med. 27, 539–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Plomin, R. & Daniels, D. Why are children in the same family so different from one another? Behav. Brain Sci. 14, 373–427 (1987).

    Article  Google Scholar 

  9. Plomin, R. Environment and genes. Determinants of behavior. Am. Psychol. 44, 105–111 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Bouchard, T. J. Jr & McGue, M. Genetic and environmental influences on human psychological differences. J. Neurobiol. 54, 4–45 (2003).

    Article  PubMed  Google Scholar 

  11. Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer — analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Harris, J. R. The Nurture Assumption: Why Children Turn Out the Way They Do 462 (Touchstone, 1999).

    Google Scholar 

  13. Turkheimer, E. & Waldron, M. Nonshared environment: a theoretical, methodological, and quantitative review. Psychol. Bull. 126, 78–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Gartner, K. & Baunack, E. Is the similarity of monozygotic twins due to genetic factors alone? Nature 292, 646–647 (1981). In this study, the phenotypic variation among isogenic monozygotic twins in mice was compared with that of dizygotic twins, and the authors concluded that a significant proportion of phenotypic variation cannot be explained by DNA sequences and environmental factors.

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Edwards, J. L. et al. Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. Am. J. Reprod. Immunol. 50, 113–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Rhind, S. M. et al. Cloned lambs — lessons from pathology. Nature Biotechnol. 21, 744–745 (2003).

    Article  CAS  Google Scholar 

  17. Yanagimachi, R. Cloning: experience from the mouse and other animals. Mol. Cell. Endocrinol. 187, 241–248 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Martin, N., Boomsma, D. & Machin, G. A twin-pronged attack on complex traits. Nature Genet. 17, 387–392 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Boomsma, D., Busjahn, A. & Peltonen, L. Classical twin studies and beyond. Nature Rev. Genet. 3, 872–882 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Jockin, V., McGue, M. & Lykken, D. T. Personality and divorce: a genetic analysis. J. Pers. Soc. Psychol. 71, 288–299 (1996).

    Article  Google Scholar 

  21. Turkheimer, E., Haley, A., Waldron, M., D'Onofrio, B. & Gottesman, I. I. Socioeconomic status modifies heritability of IQ in young children. Psychol. Sci. 14, 623–628 (2003).

    Article  PubMed  Google Scholar 

  22. Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era — concepts and misconceptions. Nature Rev. Genet. 9, 255–266 (2008). This paper discusses the complexities in interpreting heritability.

    Article  CAS  PubMed  Google Scholar 

  23. Heath, A. C., Eaves, L. J. & Martin, N. G. Interaction of marital status and genetic risk for symptoms of depression. Twin Res. 1, 119–122 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Stokstad, E. Biophysics: DNA on the big screen. Science 275, 1882 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Gottesman, I. I. Twins: en route to QTLs for cognition. Science 276, 1522–1523 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Maher, B. Personal genomes: the case of the missing heritability. Nature 456, 18–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Feuk, L., Carson, A. R. & Scherer, S. W. Structural variation in the human genome. Nature Rev. Genet. 7, 85–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Frazer, K. A., Murray, S. S., Schork, N. J. & Topol, E. J. Human genetic variation and its contribution to complex traits. Nature Rev. Genet. 10, 241–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Vogel, F. & Motulsky, A. Human Genetics: Problems and Approaches 851 (Springer, 1997).

    Book  Google Scholar 

  30. Richards, E. J. Inherited epigenetic variation — revisiting soft inheritance. Nature Rev. Genet. 7, 395–401 (2006). This review provides an informative and balanced summary of epigenetic heritability across generations and its possible role in evolution.

    Article  CAS  PubMed  Google Scholar 

  31. Jirtle, R. L. & Skinner, M. K. Environmental epigenomics and disease susceptibility. Nature Rev. Genet. 8, 253–262 (2007). This review summarizes the evidence that environmental factors can change the epigenetic regulation of genes, as well as that certain environmentally induced epigenetic modifications can be heritable.

    Article  CAS  PubMed  Google Scholar 

  32. Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nature Neurosci. 7, 847–854 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Collins, A. et al. Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus. PLoS ONE 4, e4330 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Fagiolini, M., Jensen, C. L. & Champagne, F. A. Epigenetic influences on brain development and plasticity. Curr. Opin. Neurobiol. 19, 207–212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ushijima, T. et al. Fidelity of the methylation pattern and its variation in the genome. Genome Res. 13, 868–874 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wong, A. H., Gottesman, I. I. & Petronis, A. Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum. Mol. Genet. 14, R11–R18 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Bouchard, T. J. Jr, Lykken, D. T., McGue, M., Segal, N. L. & Tellegen, A. Sources of human psychological differences: the Minnesota Study of Twins Reared Apart. Science 250, 223–228 (1990). This landmark study in human research challenges ideas about the importance of environment on several physical and psychological traits, which were investigated in pairs of monozygotic and dizygotic twins who had been reared apart and together.

    Article  ADS  PubMed  Google Scholar 

  38. Finch, C. E. & Kirkwood, T. Chance, Development, and Aging (Oxford Univ. Press, 2000).

    Google Scholar 

  39. Gartner, K. A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab. Anim. 24, 71–77 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Blewitt, M. E., Vickaryous, N. K., Paldi, A., Koseki, H. & Whitelaw, E. Dynamic reprogramming of DNA methylation at an epigenetically sensitive allele in mice. PLoS Genet. 2, e49 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Flanagan, J. M. et al. Intra- and interindividual epigenetic variation in human germ cells. Am. J. Hum. Genet. 79, 67–84 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Haaf, T. Methylation dynamics in the early mammalian embryo: implications of genome reprogramming defects for development. Curr. Top. Microbiol. Immunol. 310, 13–22 (2006).

    CAS  PubMed  Google Scholar 

  43. Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. Demethylation of the zygotic paternal genome. Nature 403, 501–502 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Rideout, W. M., Eggan, K. & Jaenisch, R. Nuclear cloning and epigenetic reprogramming of the genome. Science 293, 1093–1098 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Kaminsky, Z. A. et al. DNA methylation profiles in monozygotic and dizygotic twins. Nature Genet. 41, 240–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Kerkel, K. et al. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nature Genet. 40, 904–908 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Heijmans, B. T., Kremer, D., Tobi, E. W., Boomsma, D. I. & Slagboom, P. E. Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum. Mol. Genet. 16, 547–554 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Hajkova, P. et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452, 877–881 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Surani, M. A., Durcova-Hills, G., Hajkova, P., Hayashi, K. & Tee, W. W. Germ line, stem cells, and epigenetic reprogramming. Cold Spring Harb. Symp. Quant. Biol. 73, 9–15 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Johannes, F. et al. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 5, e1000530 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Macleod, D., Clark, V. H. & Bird, A. Absence of genome-wide changes in DNA methylation during development of the zebrafish. Nature Genet. 23, 139–140 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Lane, N. et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35, 88–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Silva, A. J. & White, R. Inheritance of allelic blueprints for methylation patterns. Cell 54, 145–152 (1988).

    Article  CAS  PubMed  Google Scholar 

  54. Youngson, N. A. & Whitelaw, E. Transgenerational epigenetic effects. Annu. Rev. Genomics Hum. Genet. 9, 233–257 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Chong, S., Youngson, N.A. & Whitelaw, E. Heritable germline epimutation is not the same as transgenerational epigenetic inheritance. Nature Genet. 39, 574–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Suter, C. M. & Martin, D. I. K. Inherited epimutation or a haplotypic basis for the propensity to silence? Nature Genet. 39, 573 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Suter, C. M. & Martin, D. I. K. Reply to “Heritable germline epimutation is not the same as transgenerational epigenetic inheritance”. Nature Genet. 39, 575–576 (2007).

    Article  CAS  Google Scholar 

  58. Pilia, G. et al. Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet. 2, e132 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hong, L. E. et al. Sensory gating endophenotype based on its neural oscillatory pattern and heritability estimate. Arch. Gen. Psychiatry 65, 1008–1016 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Allen, N. D., Norris, M. L. & Surani, M. A. Epigenetic control of transgene expression and imprinting by genotype-specific modifiers. Cell 61, 853–861 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Petronis, A. & Kennedy, J. L. Unstable genes — unstable mind? Am. J. Psychiatry 152, 164–172 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Timshel, S., Therkildsen, C., Bendahl, P. O., Bernstein, I. & Nilbert, M. An effect from anticipation also in hereditary nonpolyposis colorectal cancer families without identified mutations. Cancer Epidemiol. 33, 231–234 (2009).

    Article  PubMed  Google Scholar 

  63. McFaul, C. D. et al. Anticipation in familial pancreatic cancer. Gut 55, 252–258 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Petronis, A., Kennedy, J. L. & Paterson, A. D. Genetic anticipation: fact or artifact, genetics or epigenetics? Lancet 350, 1403–1404 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Sollars, V. et al. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature Genet. 33, 70–74 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Jablonka, E. & Lamb, M.J. Precis of evolution in four dimensions. Behav. Brain Sci. 30, 353–365; 365–389 (2007).

    Article  PubMed  Google Scholar 

  67. Pigliucci, M. Modelling phenotypic plasticity. II. Do genetic correlations matter? Heredity 77, 453–460 (1996).

    Article  PubMed  Google Scholar 

  68. Pal, C. & Miklos, I. Epigenetic inheritance, genetic assimilation and speciation. J. Theor. Biol. 200, 19–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. De Vries, H. Species and Varieties: Their Origin by Mutation (Open Court, 1904).

    Google Scholar 

  70. Kuhn, T. S. The Structure of Scientific Revolutions 172 (Univ. Chicago Press, 1962).

    Google Scholar 

  71. Petronis, A. Human morbid genetics revisited: relevance of epigenetics. Trends Genet. 17, 142–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Pauling, L. et al. Sickle cell anemia, a molecular disease. Science 109, 543–548 (1949).

    Article  ADS  Google Scholar 

  73. Risch, N. Genetic linkage and complex diseases, with special reference to psychiatric disorders. Genet. Epidemiol. 7, 3–16; 17–45 (1990).

    Article  CAS  PubMed  Google Scholar 

  74. Laird, P. W. Principles and challenges of genome-wide DNA methylation analysis. Nature Rev. Genet. 11, 191–203 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank A. Wong, I. Gottesman, A. Paterson and C. Ptak for editorial suggestions, A. Schumacher for figure design, and the reviewers for their comments. Work in my laboratory has been supported by the Canadian Institutes of Health Research (grants 199170 and 186007) and the US National Institutes of Health (grants MH074127, MH088413, DP3DK085698 and HG004535). I am Tapscott Chair in Schizophrenia Studies at the University of Toronto and a senior fellow of the Ontario Mental Health Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturas Petronis.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petronis, A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 465, 721–727 (2010). https://doi.org/10.1038/nature09230

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09230

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing