Diamonds sampled by plumes from the core–mantle boundary


Diamonds are formed under high pressure more than 150 kilometres deep in the Earth’s mantle and are brought to the surface mainly by volcanic rocks called kimberlites. Several thousand kimberlites have been mapped on various scales1,2,3,4, but it is the distribution of kimberlites in the very old cratons (stable areas of the continental lithosphere that are more than 2.5 billion years old and 300 kilometres thick or more5) that have generated the most interest, because kimberlites from those areas are the major carriers of economically viable diamond resources. Kimberlites, which are themselves derived from depths of more than 150 kilometres, provide invaluable information on the composition of the deep subcontinental mantle lithosphere, and on melting and metasomatic processes at or near the interface with the underlying flowing mantle. Here we use plate reconstructions and tomographic images to show that the edges of the largest heterogeneities in the deepest mantle, stable for at least 200 million years and possibly for 540 million years, seem to have controlled the eruption of most Phanerozoic kimberlites. We infer that future exploration for kimberlites and their included diamonds should therefore be concentrated in continents with old cratons that once overlay these plume-generation zones at the core–mantle boundary.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Reconstructed large igneous provinces and kimberlites for the past 320 Myr with respect to shear-wave anomalies at the base of the mantle.
Figure 2: Late-Jurassic plate reconstruction of continents and kimberlite locations draped on the SMEAN model.
Figure 3: Devonian and Cambrian period plate reconstructions draped on the SMEAN model.
Figure 4: Reconstructed Palaeozoic kimberlites from Laurentia (North America, Canada), Siberia and core Gondwana draped on the SMEAN model.


  1. 1

    Jelsma, H. A. et al. Preferential distribution along transcontinental corridors of kimberlites and related rocks of southern Africa. S. Afr. J. Geol. 107, 301–324 (2004)

    Article  Google Scholar 

  2. 2

    Kjarsgaard, B. A. in Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods (ed. Goodfellow, W. D.) 245–272 (Geol. Assoc. Canada Special Publication 5, 2007)

    Google Scholar 

  3. 3

    Jelsma, H., Barnett, W., Richards, S. & Lister, G. Tectonic setting of kimberlites. Lithos 112, 155–165 (2009)

    ADS  Article  Google Scholar 

  4. 4

    Heaman, L. M. & Kjarsgaard, B. A. Timing of eastern North American kimberlite magmatism: continental extension of the Great Meteor hotspot track? Earth Planet. Sci. Lett. 178, 253–268 (2000)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Jordan, T. H. in The Mantle Sample: Inclusions in Kimberlites and Other Volcanics (eds Boyd, F. R. &. Meyer, H. O. A.) 1–14 (AGU, 1979)

    Google Scholar 

  6. 6

    Mitchell, R. H. Kimberlites: Mineralogy, Geochemistry and Petrology (Plenum, 1986)

    Google Scholar 

  7. 7

    Wyllie, P. J. The origin of kimberlites. J. Geophys. Res. 85, 6902–6910 (1980)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Ringwood, A. E., Kesson, S. E., Hibberson, W. & Ware, N. Origin of kimberlites and related magmas. Earth Planet. Sci. Lett. 113, 521–538 (1992)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Haggerty, S. E. A diamond trilogy: superplumes, supercontinents, and supernovae. Science 285, 851–861 (1999)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Hayman, P. C., Kopylova, M. G. & Kaminsky, F. V. Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contrib. Mineral. Petrol. 149, 430–445 (2005)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Bryan, S. & Ernst, R. Revised definition of large igneous provinces (LIPs). Earth Sci. Rev. 86, 175–202 (2008)

    ADS  Article  Google Scholar 

  13. 13

    Garnero, E. J., Lay, T. & McNamara, A. K. in Plates, Plumes, and Planetary Processes (eds Foulger, G. R. & Jurdy, D. M.) 79–109 (Geol. Soc. Am. Special Paper 430, 2007)

    Google Scholar 

  14. 14

    Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys. J. Int. 167, 1447–1460 (2006)

    ADS  Article  Google Scholar 

  15. 15

    Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. Long term stability in deep mantle structure: evidence from the 300 Ma Skagerrak-centered large igneous province (the SCLIP). Earth Planet. Sci. Lett. 267, 444–452 (2008)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Torsvik, T. H., Steinberger, B., Cocks, L. R. M. & Burke, K. Longitude: linking Earth’s ancient surface to its deep interior. Earth Planet. Sci. Lett. 276, 273–283 (2008)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Thorne, M. S., Garnero, E. J. & Grand, S. Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Planet. Inter. 146, 47–63 (2004)

    ADS  Article  Google Scholar 

  18. 18

    Montelli, R., Nolet, G., Dahlen, F. & Masters, G. A catalogue of deep mantle plumes: new results from finite-frequency tomography. Geochem. Geophys. Geosyst. 7 Q11007 10.1029/2006GC001248 (2006)

    ADS  Article  Google Scholar 

  19. 19

    Davaille, A., Stutzmann, E., Silveira, G., Besse, J. & Courtillot, V. Convective patterns under the Indo-Atlantic. Earth Planet. Sci. Lett. 239, 233–252 (2005)

    CAS  ADS  Article  Google Scholar 

  20. 20

    Becker, T. W. & Boschi, L. A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst. 3 1003 10.1029/2001GC000168 (2002)

    ADS  Article  Google Scholar 

  21. 21

    Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B. & Gaina, C. Global plate motion frames: toward a unified model. Rev. Geophys. 46 RG3004 10.1029/2007RG000227 (2008)

    ADS  Article  Google Scholar 

  22. 22

    Steinberger, B. & Torsvik, T. H. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452, 620–623 (2008)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Yakubchuk, A. Diamond deposits of the Siberian craton: products of post-1200 Ma plume events affecting the lithospheric keel. Ore Geol. Rev. 35, 155–163 (2009)

    Article  Google Scholar 

  24. 24

    Kinny, P. D., Griffin, B. J., Heaman, L. M., Brakhfogel, F. F. & Spetsius, Z. V. Shrimp U–Pb ages of perovskite from Yakutian kimberlites. Russ. Geol. Geophys. 38, 97–105 (1997)

    Google Scholar 

  25. 25

    Heaman, L. M., Kjarsgaard, B. A. & Creaser, R. A. The timing of kimberlite magmatism in North America: implications for global kimberlite genesis and diamond exploration. Lithos 71, 153–184 (2004)

    ADS  Article  Google Scholar 

  26. 26

    Le Roex, A. P., Bell, D. R. & Davis, D. Petrogenesis of group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J. Petrol. 44, 2261–2286 (2003)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Zhong, S., Zhang, N., Li, Z. X. & Roberts, J. H. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth Planet. Sci. Lett. 261, 551–564 (2007)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Li, Z. X. & Zhong, S. Supercontinent–superplume coupling, true polar wander and plume mobility: plate dominance in whole-mantle tectonics. Phys. Earth Planet. Inter. 176, 143–156 (2009)

    ADS  Article  Google Scholar 

  29. 29

    Tan, E., Leng, W., Zhong, S. & Gurnis, M. On the fixity of the thermo-chemical piles at the base of mantle. Eos (Fall Meeting) 90, abstr. DI12A–08 (2009)

  30. 30

    Jaques, A. L. Kimberlite and lamproite diamond pipes. AGSO J. Aust. Geol. Geophys. 17, 153–162 (1998)

    Google Scholar 

  31. 31

    Steinberger, B., Sutherland, R. & O’Connell, R. J. Prediction of Emperor–Hawaii seamount locations from a revised model of plate motion and mantle flow. Nature 430, 167–173 (2004)

    CAS  ADS  Article  Google Scholar 

  32. 32

    Boschi, L., Becker, T. W. & Steinberger, B. Mantle plumes: dynamic models and seismic images. Geochem. Geophys. Geosyst. 8 Q10006 10.1029/2007GC001733 (2007)

    ADS  Article  Google Scholar 

  33. 33

    Sleep, N. H. Mantle plumes from top to bottom. Earth Sci. Rev. 77, 231–271 (2006)

    ADS  Article  Google Scholar 

  34. 34

    Courtillot, V., Jaupart, C., Manighetti, I., Tapponnier, P. & Besse, J. On causal links between flood basalts and continental breakup. Earth Planet. Sci. Lett. 166, 177–195 (1999)

    CAS  ADS  Article  Google Scholar 

  35. 35

    Castle, J. C., Creager, K. C., Winchester, J. P. & van der Hilst, R. D. Shear wave speeds at the base of the mantle. J. Geophys. Res. 105, 21543–21558 (2000)

    ADS  Article  Google Scholar 

  36. 36

    Kuo, B.-Y., Garnero, E. J. & Lay, T. Tomographic inversion of S–SKS times for shear wave velocity heterogeneity in D”: degree 12 and hybrid models. J. Geophys. Res. 105, 139–157 (2000)

    Article  Google Scholar 

  37. 37

    van der Meer, D. G., Spakman, W., van Hinsbergen, D. J. J., Amaru, M. L. & Torsvik, T. H. Towards absolute plate motions constrained by lower-mantle slab remnants. Nature Geosci. 3, 36–40 (2010)

    CAS  ADS  Article  Google Scholar 

  38. 38

    England, P. & Houseman, G. On the geodynamic setting of kimberlite genesis. Earth Planet. Sci. Lett. 67, 109–122 (1984)

    ADS  Article  Google Scholar 

  39. 39

    Johnston, S. The Cordilleran ribbon continent of North America. Annu. Rev. Earth Planet. Sci. 36, 495–530 (2008)

    CAS  ADS  Article  Google Scholar 

  40. 40

    Davies, R., Griffin, W. L., O’Reilly, S. Y. & McCandless, T. E. Inclusions in diamonds from the K14 and K10 kimberlites, Buffalo Hills, Alberta, Canada: diamond growth in a plume? Lithos 77, 99–111 (2004)

    CAS  ADS  Article  Google Scholar 

  41. 41

    Stachel, T., Harris, J. W. & Muehlenbachs, K. Sources of carbon in inclusion bearing diamonds. Lithos 112, 625–637 (2009)

    ADS  Article  Google Scholar 

  42. 42

    Foulger, G. R. & Jurdy, D. M. (eds) Plates, Plumes, and Planetary Processes (Geol. Soc. Am. Special Paper 430, 2007)

    Google Scholar 

Download references


We thank R. Trønnes, S. Haggerty, M. Gurnis and C. Gaina for comments and discussions, and S. King and D. Evans for reviews. We acknowledge Statoil and the Norwegian Research Council for financial support.

Author information




T.H.T. and K.B. developed the conceptual idea for the study, B.S. developed statistical methods and tests and S.J.W. and L.D.A. assembled input data. All authors contributed to discussions and writing of the manuscript.

Corresponding author

Correspondence to Trond H. Torsvik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Information, References, Supplementary Table S1 and Supplementary Figures S1-S8 with legends. (PDF 10839 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Torsvik, T., Burke, K., Steinberger, B. et al. Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352–355 (2010).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing