Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The four hundred years of planetary science since Galileo and Kepler

Abstract

For 350 years after Galileo’s discoveries, ground-based telescopes and theoretical modelling furnished everything we knew about the Sun’s planetary retinue. Over the past five decades, however, spacecraft visits to many targets transformed these early notions, revealing the diversity of Solar System bodies and displaying active planetary processes at work. Violent events have punctuated the histories of many planets and satellites, changing them substantially since their birth. Contemporary knowledge has finally allowed testable models of the Solar System’s origin to be developed and potential abodes for extraterrestrial life to be explored. Future planetary research should involve focused studies of selected targets, including exoplanets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ‘magnificent desolation’ of the Earth’s Moon.
Figure 2: Dynamical studies complement the Solar System’s exploration by spacecraft.
Figure 3: Titan: a new world is uncovered by space missions.
Figure 4: Jupiter’s Galilean satellites and other moons of the giant planets.
Figure 5: The allure of the outer Solar System.
Figure 6: Saturn’s rings provide analogues to protoplanetary disks.
Figure 7: Radar observations unveil Venus’ hellish landscape.
Figure 8: The Earth’s sibling, Mars.

Similar content being viewed by others

References

  1. Harwit, M. O. Cosmic Discovery: The Search, Scope and Heritage of Astronomy (Basic Books, 1981)

    Google Scholar 

  2. Schorn, R. A. Planetary Astronomy: From Ancient Times till the Third Millennium (Texas A&M Press, 1998)

    Google Scholar 

  3. Russell, H. N., Dugan, R. S. & Stewart, J. Q. Astronomy. A Revision of Young’s Manual of the Solar System (Ginn & Co., 1926)

    Google Scholar 

  4. Doel, R. E. Solar System Astronomy in America: Communities, Patronage and Interdisciplinary Science 1920–1960 (Cambridge University Press, 1996)

    Google Scholar 

  5. Baldwin, R. B. The Face of the Moon (University of Chicago Press, 1949)

    Google Scholar 

  6. Urey, H. C. Planets: Their Origin and Development (Yale University Press, 1952)This seminal book by a Nobel-Prize-winning chemist was the first about planetary evolution and cosmogony to be written from a chemical rather than physical or astronomical perspective.

    Google Scholar 

  7. Tatarewicz, J. T. Space Technology and Planetary Astronomy (Indiana University Press, 1990)

    Google Scholar 

  8. Cadbury, D. Space Race: The Epic Battle between America and the Soviet Union for Dominion of Space (Harper Collins, 2006)

    Google Scholar 

  9. McDougall, W. A. The Heavens and the Earth: A Political History of the Space Age (Basic Books, 1985)

    Google Scholar 

  10. Shklovskii, I. S. & Sagan, C. Intelligent Life in the Universe (Holden-Day, 1966)

    Google Scholar 

  11. Burns, J. A. Sputnik, space and me. Nature Phys. 3, 664–668 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Kepler: a Search for Habitable Planetswww.kepler.arc.nasa.gov〉. (Ames Research Center, NASA, 2010)

  13. Bagenal, F., Dowling, T. E. & McKinnon, W. B. (eds) Jupiter: The Planet, Satellites and Magnetosphere (Cambridge University Press, 2004)

    Google Scholar 

  14. Brown, R. H., Lebreton, J.-P. & Waite, J. H. (eds) Titan from Cassini-Huygens (Springer, Dordrecht, 2009)

    Google Scholar 

  15. Goldreich, P. & Tremaine, S. The dynamics of planetary rings. Annu. Rev. Astron. Astrophys. 20, 249–283 (1982)During the late 1970s and 1980s, this dynamic duo described the fundamental mechanisms that govern the interactions between planetary rings (or, equivalently, protoplanetary disks) and nearby masses.

    Article  ADS  Google Scholar 

  16. Cuzzi, J. N. et al. An evolving view of Saturn’s dynamical rings. Science 327, 1470–1475 (2010)

    Article  ADS  CAS  Google Scholar 

  17. Wolszczan, A. & Frail, D. A. A planetary system around the millisecond pulsar PSR1257+12. Nature 355, 145–147 (1992)

    Article  ADS  Google Scholar 

  18. Mayor, M. & Queloz, D. A. Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995)After this first extrasolar planet around a solar-type star (see ref. 17) was announced, nearly 500 other extrasolar planets of enormous variety have been discovered, broadening the purview of planetary science.

    Article  ADS  CAS  Google Scholar 

  19. Wright, J. T. Exoplanet Data Explorer (Exoplanet Orbit Database)http://www.exoplanets.org〉 (2010)

    Google Scholar 

  20. McKay, D. et al. Search for past life on Mars: possible relic biogenic activity in martian meteorite AL84001. Science 273, 924–930 (1996)

    Article  ADS  CAS  Google Scholar 

  21. Chyba, C. F. & Hand, K. P. Astrobiology: the study of life in the universe. Annu. Rev. Astron. Astrophys. 43, 31–74 (2005)

    Article  ADS  Google Scholar 

  22. Jewitt, D. & Luu, J. Discovery of the candidate Kuiper belt object 1992 QB1. Nature 362, 730–732 (1993)An entirely new Solar System genus was disclosed when this large icy mass was spied just beyond Pluto; a thousand more23, displaying a rich orbital architecture, are now known, reaching out three times as far from the Sun.

    Article  ADS  Google Scholar 

  23. Barucci, M. A., Boenhardt, H., Cruikshank, D. P. & Morbidelli, A. (eds) The Solar System beyond Neptune (University of Arizona Press, 2008)

    Google Scholar 

  24. Festou, M. C., Keller, H. U. & Weaver, H. A. (eds) Comets II (University of Arizona Press, 2004)

    Google Scholar 

  25. Smith, B. A. et al. Encounter with Saturn: Voyager 1 imaging science results. Science 212, 163–191 (1981)This instalment of Voyager ’s mind-bending ‘30-day’ reports that followed each planetary fly-by displayed Saturn’s surprisingly complex rings, described Titan’s atmosphere, and argued that some small satellites had been disrupted several times.

    Article  ADS  CAS  Google Scholar 

  26. Dougherty, M. K., Brown, R. H. & Esposito, L. W. (eds) Saturn After Cassini-Huygens (Springer, 2009)

    Book  Google Scholar 

  27. Bougher, S. W., Hunten, D. M. & Phillips, R. J. (eds) Venus II: Geology, Geophysics, Atmosphere and Solar Wind Environment (University of Arizona Press, 1997)

    Google Scholar 

  28. Bell, J. (ed) The Martian Surface: Composition, Mineralogy and Physical Properties (Cambridge University Press, 2008)

    Book  Google Scholar 

  29. Carr, M. H. The Surface of Mars (Cambridge University Press, 2007)

    Book  Google Scholar 

  30. Burns, J. A. & Matthews, M. S. (eds) Satellites (University of Arizona Press, 1986)

    Google Scholar 

  31. Steinbacher, R. H. et al. Mariner 9 science experiments: preliminary results. Science 175, 293–323 (1972)This contains the initial reports from the first orbiter of another planet, which would eventually survey Mars’s enormous volcanoes, the Solar System’s largest rift system, apparent river valleys, atmospheric phenomena (including dust storms) and remarkable tiny moons.

    Article  ADS  CAS  Google Scholar 

  32. Burns, J. A., Lamy, P. L. & Soter, S. Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979)

    Article  ADS  Google Scholar 

  33. Bottke, W. F., Vokrouhlicky, D., Rubincam, D. P. & Nesvorny, D. The Yarkovsky and YORP effects. Annu. Rev. Earth Planet. Sci. 34, 157–191 (2006)

    Article  ADS  CAS  Google Scholar 

  34. Whipple, F. L. A comet model I. The acceleration of comet Encke. Astrophys. J. 111, 375–394 (1950)

    Article  ADS  Google Scholar 

  35. Brownlee, D. et al. Comet 81P/Wild 2 under a microscope. Science 314, 1711–1716 (2006)

    Article  ADS  CAS  Google Scholar 

  36. Wyatt, M. C. Evolution of debris disks. Annu. Rev. Astron. Astrophys. 46, 339–383 (2008)

    Article  ADS  Google Scholar 

  37. Wisdom, J., Peale, S. J. & Mignard, F. The chaotic rotation of Hyperion. Icarus 58, 137–152 (1984)

    Article  ADS  Google Scholar 

  38. Touma, J. & Wisdom, J. The chaotic obliquity of Mars. Science 259, 1294–1297 (1993)

    Article  ADS  CAS  Google Scholar 

  39. Laskar, J. & Gastineau, M. Existence of collisional trajectories of Mercury, Venus and Mars with Earth. Nature 459, 817–819 (2009)

    Article  ADS  CAS  Google Scholar 

  40. Tera, F., Papanastassiou, D. A. & Wasserburg, G. J. Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22, 1–21 (1974)

    Article  ADS  CAS  Google Scholar 

  41. Wilhelms, D. E. The Geological History of the Moon (USGS Professional Paper 1348, 1987)

    Google Scholar 

  42. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980)

    Article  ADS  CAS  Google Scholar 

  43. Noll, K. S., Weaver, H. A. & Feldman, P. D. (eds) The Collision of Comet Shoemaker-Levy 9 and Jupiter (IAU Colloquium 156, Cambridge University Press, 1996)

    Book  Google Scholar 

  44. Hess, H. H. in Petrologic Studies (eds Buddington, A. F., Engel, A. E. J., James, H. L. & Leonard, B. F.) 599–620 (Geological Society of America, 1962)

    Google Scholar 

  45. Malin, M. C. & Edgett, K. S. Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302, 1931–1934 (2003)

    Article  ADS  CAS  Google Scholar 

  46. Malin, M. C., Edgett, K. S., Posilova, L. V., McColley, S. M. & Noe Dobrea, E. Z. Present-day impact cratering rate and contemporary gulley activity on Mars. Science 314, 1573–1577 (2006)

    Article  ADS  CAS  Google Scholar 

  47. Hubbard, W. B., Burrows, A. & Lunine, J. I. Theory of giant planets. Annu. Rev. Astron. Astrophys. 40, 103–136 (2002)

    Article  ADS  Google Scholar 

  48. Dole, S. H. Habitable Planets for Man (Blaisdell, 1964)

    Google Scholar 

  49. Postberg, F. et al. Sodium salts in E-ring grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009)

    Article  ADS  CAS  Google Scholar 

  50. Brush, S. G. Fruitful Encounters. The Origin of the Solar System from Chamberlain to Apollo (Cambridge University Press, 1996)

    Google Scholar 

  51. Patterson, C. C. The age of meteorites and the Earth. Geochim. Cosmochim. Acta 10, 230–237 (1956)

    Article  ADS  CAS  Google Scholar 

  52. Lauretta, D. S. & McSween, H. Y. (eds) Meteorites and the Early Solar System II (University of Arizona Press, 2006)

    Google Scholar 

  53. Beckwith, S. V. W. & Sargent, A. I. Circumstellar disks and the search for neighbouring planetary systems. Nature 383, 139–144 (1996)

    Article  ADS  CAS  Google Scholar 

  54. Smith, B. A. & Terrile, R. J. A circumstellar disk around Beta Pictoris. Science 226, 1421–1424 (1984)

    Article  ADS  CAS  Google Scholar 

  55. Deming, D. & Seager, S. Light and shadow from distant worlds. Nature 462, 301–306 (2009)

    Article  ADS  CAS  Google Scholar 

  56. Chambers, J. E. Planetary migration: what does it mean for planet formation? Annu. Rev. Earth Planet. Sci. 37, 321–344 (2009)

    Article  ADS  CAS  Google Scholar 

  57. Safronov, V. S. Evolution of the Protoplanetary Cloud and the Formation of the Earth and the Planets [in Russian; Nauka, 1969] (translated NASA TT-F-677; Keter Press, 1972)

    Google Scholar 

  58. Greenberg, R., Hartmann, W. K., Chapman, C. R. & Wacker, J. F. Planetesimals to planets—numerical simulations of collisional evolution. Icarus 35, 1–26 (1978)

    Article  ADS  Google Scholar 

  59. Richardson, D. C. & Walsh, K. J. Binary minor planets. Annu. Rev. Earth Planet. Sci. 34, 47–81 (2006)

    Article  ADS  CAS  Google Scholar 

  60. Fujiwara, A. et al. The rubble-pile asteroid Itokawa as observed by Hayabusa . Science 312, 1330–1334 (2006)

    Article  ADS  CAS  Google Scholar 

  61. Wetherill, G. W. Formation of the terrestrial planets. Annu. Rev. Astron. Astrophys. 18, 77–113 (1980)

    Article  ADS  CAS  Google Scholar 

  62. Hartmann, W. K. & Davis, D. R. Satellite-sized planetesimals and lunar origin. Icarus 24, 504–514 (1975)

    Article  ADS  Google Scholar 

  63. Canup, R. M. Lunar-forming collisions with pre-impact rotation. Icarus 196, 518–538 (2008)

    Article  ADS  Google Scholar 

  64. Udry, S. & Santos, N. C. Statistical properties of exoplanets. Annu. Rev. Astron. Astrophys. 45, 397–439 (2007)

    Article  ADS  CAS  Google Scholar 

  65. Fernandez, J. A. & Ip, W.-H. Some dynamical aspects of the accretion of Uranus and Neptune—the exchange of angular momentum with planetesimals. Icarus 58, 109–120 (1984)

    Article  ADS  Google Scholar 

  66. Duncan, M. J., Quinn, T. & Tremaine, S. The origin of short-period comets. Astrophys. J. 328, L69–L73 (1988)

    Article  ADS  Google Scholar 

  67. Tsiganis, K., Gomes, R., Levison, H. F. & Morbidelli, A. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005)

    Article  ADS  CAS  Google Scholar 

  68. Kalas, P. et al. Optical images of an extrasolar planet about 25 light-years from Earth. Science 322, 1345–1347 (2008)

    Article  ADS  CAS  Google Scholar 

  69. Marios, C. et al. Direct imaging of multiple planets orbiting the star HR8799. Science 322, 1348–1352 (2008)

    Article  ADS  Google Scholar 

  70. Abelson, P. H. (ed) Summary of the Apollo 11 Lunar Science Conference. Science 167, 449–784 (1970)The chemistry, mineralogy, and petrology of the first lunar samples are discussed, as well as measurements of the surface instruments, following presentations at the inaugural annual meeting in Houston.

    Article  ADS  Google Scholar 

  71. Wisdom, J. & Holman, M. Symplectic maps for the n-body problem. Astron. J. 102, 1528–1538 (1991)Numerical simulations became much more powerful once this efficient integration scheme and later variants72,73 entered general use.

    Article  ADS  Google Scholar 

  72. Duncan, M. J., Levison, H. F. & Lee, M.-H. A multiple-time-step symplectic algorithm for integrating close encounters. Astron. J. 116, 2067–2077 (1998)

    Article  ADS  Google Scholar 

  73. Morbidelli, A. Modern integrations of solar system dynamics. Annu. Rev. Earth Planet. Sci. 30, 89–112 (2002)

    Article  ADS  CAS  Google Scholar 

  74. Peale, S. J., Cassen, P. & Reynolds, R. T. Melting of Io by tidal dissipation. Science 203, 892–894 (1979)

    Article  ADS  CAS  Google Scholar 

  75. Denk, T. et al. Iapetus: unique surface properties and a global color dichotomy from Cassini imaging. Science 327, 435–438 (2010)

    Article  ADS  CAS  Google Scholar 

  76. Porco, C. C. et al. Cassini observes the active south pole of Enceladus. Science 311, 1393–1401 (2006)

    Article  ADS  CAS  Google Scholar 

  77. Burrows, W. E. Voyages in the Solar System and Beyond (Random House, 1990)

    Google Scholar 

  78. Laskar, J., Levard, B. & Mustard, J. F. Orbital forcing of the martian polar layered deposits. Nature 419, 375–377 (2002)

    Article  ADS  CAS  Google Scholar 

  79. Cruikshank, D. P. & Chamberlain, J. W. in The American Astronomical Society’s First Century (ed. DeVorkin, D. H.) 252–268 (American Institute of Physics, 1999)

    Google Scholar 

  80. Planetary Science Decadal Panel 〈www8.nationalacademies.org/ssbsurvey/publicview.aspx〉 (The National Academies, 2010)

Download references

Acknowledgements

B. Byington, J. K. Burns, C. R. Chapman, D. P. Cruikshank, M. M. Hedman, T. Owen, D. Tamayo, P. C. Thomas, M. S. Tiscareno and especially Jeffrey N. Cuzzi provided advice on previous drafts of the manuscript. I thank the Isaac Newton Institute of the University of Cambridge, where this article was principally written, for its hospitality. Figures 1a, 2a, 3a, 4a, 5a, 6a, 7a and 8a are provided courtesy of the Division of Rare and Manuscript Collections, Cornell University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Burns.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burns, J. The four hundred years of planetary science since Galileo and Kepler. Nature 466, 575–584 (2010). https://doi.org/10.1038/nature09215

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09215

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing