Atomically precise bottom-up fabrication of graphene nanoribbons

Abstract

Graphene nanoribbons—narrow and straight-edged stripes of graphene, or single-layer graphite—are predicted to exhibit electronic properties that make them attractive for the fabrication of nanoscale electronic devices1,2,3. In particular, although the two-dimensional parent material graphene4,5 exhibits semimetallic behaviour, quantum confinement and edge effects2,6 should render all graphene nanoribbons with widths smaller than 10 nm semiconducting. But exploring the potential of graphene nanoribbons is hampered by their limited availability: although they have been made using chemical7,8,9, sonochemical10 and lithographic11,12 methods as well as through the unzipping of carbon nanotubes13,14,15,16, the reliable production of graphene nanoribbons smaller than 10 nm with chemical precision remains a significant challenge. Here we report a simple method for the production of atomically precise graphene nanoribbons of different topologies and widths, which uses surface-assisted coupling17,18 of molecular precursors into linear polyphenylenes and their subsequent cyclodehydrogenation19,20. The topology, width and edge periphery of the graphene nanoribbon products are defined by the structure of the precursor monomers, which can be designed to give access to a wide range of different graphene nanoribbons. We expect that our bottom-up approach to the atomically precise fabrication of graphene nanoribbons will finally enable detailed experimental investigations of the properties of this exciting class of materials. It should even provide a route to graphene nanoribbon structures with engineered chemical and electronic properties, including the theoretically predicted intraribbon quantum dots21, superlattice structures22 and magnetic devices based on specific graphene nanoribbon edge states3.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Bottom-up fabrication of atomically precise GNRs.
Figure 2: Straight GNRs from bianthryl monomers.
Figure 3: Chevron-type GNRs from tetraphenyl-triphenylene monomers.
Figure 4: Versatility of bottom-up GNR synthesis.

References

  1. 1

    Wakabayashi, K. Electronic transport properties of nanographite ribbon junctions. Phys. Rev. B 64, 125428 (2001)

    ADS  Article  Google Scholar 

  2. 2

    Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Son, Y. W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Yang, L., Park, C. H., Son, Y. W., Cohen, M. L. & Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007)

    ADS  Article  Google Scholar 

  7. 7

    Datta, S. S., Strachan, D. R., Khamis, S. M. & Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 8, 1912–1915 (2008)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Campos-Delgado, J. et al. Bulk production of a new form of sp(2) carbon: crystalline graphene nanoribbons. Nano Lett. 8, 2773–2778 (2008)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Yang, X. Y. et al. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 130, 4216–4217 (2008)

    CAS  Article  Google Scholar 

  10. 10

    Li, X. L., Wang, X. R., Zhang, L., Lee, S. W. & Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Chen, Z. H., Lin, Y. M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Han, M. Y., Ozyilmaz, B., Zhang, Y. B. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    ADS  Article  Google Scholar 

  13. 13

    Jiao, L. Y., Zhang, L., Wang, X. R., Diankov, G. & Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–875 (2009)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Elías, A. L. et al. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett. 10, 366–372 (2009)

    ADS  Article  Google Scholar 

  16. 16

    Jiao, L., Wang, X., Diankov, G., Wang, H. & Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nature Nanotechnol. 5, 321–325 (2010)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotechnol. 2, 687–691 (2007)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Gourdon, A. On-surface covalent coupling in ultrahigh vacuum. Angew. Chem. Int. Edn Engl. 47, 6950–6953 (2008)

    CAS  Article  Google Scholar 

  19. 19

    Otero, G. et al. Fullerenes from aromatic precursors by surface-catalysed cyclodehydrogenation. Nature 454, 865–868 (2008)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Rim, K. T. et al. Forming aromatic hemispheres on transition-metal surfaces. Angew. Chem. Int. Edn Engl. 46, 7891–7895 (2007)

    CAS  Article  Google Scholar 

  21. 21

    Huang, L., Lai, Y. C., Ferry, D. K., Akis, R. & Goodnick, S. M. Transmission and scarring in graphene quantum dots. J. Phys. Condens. Matter 21, 344203 (2009)

    Article  Google Scholar 

  22. 22

    Sevincli, H., Topsakal, M. & Ciraci, S. Superlattice structures of graphene-based armchair nanoribbons. Phys. Rev. B 78, 245402 (2008)

    ADS  Article  Google Scholar 

  23. 23

    Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Vandescuren, M., Hermet, P., Meunier, V., Henrard, L. & Lambin, P. Theoretical study of the vibrational edge modes in graphene nanoribbons. Phys. Rev. B 78, 195401 (2008)

    ADS  Article  Google Scholar 

  25. 25

    Classen, T. et al. Templated growth of metal-organic coordination chains at surfaces. Angew. Chem. Int. Edn Engl. 44, 6142–6145 (2005)

    CAS  Article  Google Scholar 

  26. 26

    Canas-Ventura, M. E. et al. Self-assembly of periodic bicomponent wires and ribbons. Angew. Chem. Int. Edn Engl. 46, 1814–1818 (2007)

    CAS  Article  Google Scholar 

  27. 27

    Briggs, D. & Beamson, G. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database Appendix I (John Wiley & Sons, 1992)

    Google Scholar 

  28. 28

    Son, Y. W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)

    ADS  Article  Google Scholar 

  29. 29

    Lee, Y. et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10, 490–493 (2010)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Caldwell, J. D. et al. Technique for the dry transfer of epitaxial graphene onto arbitrary substrates. ACS Nano 4, 1108–1114 (2010)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation and the NCCR Nanoscale Science. R.F. and P.R. thank O. Gröning and P. Gröning for stimulating discussions and continued support. A.P.S. acknowledges discussions with F. Mauri and M. Lazzeri. The Mainz group acknowledges financial support from the Max Planck Society through the program ENERCHEM, the German Science Foundation (Korean-German IRTG), the DFG Priority Program SPP 1355 and DFG MU 334/32-1.

Author information

Affiliations

Authors

Contributions

P.R, R.F., X.F. and K.M. conceived the experiments. M.S. synthesized the molecular precursors. J.C., R.J., M.B. and P.R. performed the growth and scanning probe experiments. T.B. and M.M. did the spectroscopic analysis. S.B. and A.P.S. performed the simulations. J.C., P.R. and R.F. prepared the figures. P.R., J.C. and R.F. wrote the paper. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding authors

Correspondence to Klaus Müllen or Roman Fasel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Information including Supplementary Methods, Supplementary Data, Supplementary Figures 1-7 with legends and References. (PDF 2452 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cai, J., Ruffieux, P., Jaafar, R. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010). https://doi.org/10.1038/nature09211

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing