Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and mechanism of human DNA polymerase η

A Corrigendum to this article was published on 03 August 2011

Abstract

The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase η (Polη), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Polη at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Polη acts like a ‘molecular splint’ to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Polη orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Polη missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Polη in replicating through D loop and DNA fragile sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of human Polη.
Figure 2: Structures of lesion DNAs.
Figure 3: Functional analyses of Q38A and R61A mutant Polη.
Figure 4: Human Polη is a molecular splint.
Figure 5: XPV mutations.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the reported crystal structures have been deposited with the Protein Data Bank under accession codes 3MR2 (Nrm), 3MR3 (TT1), 3MR4 (TT2), 3MR5 (TT3) and 3MR6 (TT4).

References

  1. Brash, D. E. Sunlight and the onset of skin cancer. Trends Genet. 13, 410–414 (1997)

    Article  CAS  Google Scholar 

  2. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399, 700–704 (1999)

    Article  CAS  ADS  Google Scholar 

  3. Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263–265 (1999)

    Article  CAS  Google Scholar 

  4. Hishida, T., Kubota, Y., Carr, A. M. & Iwasaki, H. RAD6–RAD18–RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light. Nature 457, 612–615 (2009)

    Article  CAS  ADS  Google Scholar 

  5. Chaney, S. G., Campbell, S. L., Bassett, E. & Wu, Y. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit. Rev. Oncol. Hematol. 53, 3–11 (2005)

    Article  Google Scholar 

  6. Saribasak, H., Rajagopal, D., Maul, R. W. & Gearhart, P. J. Hijacked DNA repair proteins and unchained DNA polymerases. Phil. Trans. R. Soc. Lond. B 364, 605–611 (2009)

    Article  CAS  Google Scholar 

  7. Kawamoto, T. et al. Dual roles for DNA polymerase η in homologous DNA recombination and translesion DNA synthesis. Mol. Cell 20, 793–799 (2005)

    Article  CAS  Google Scholar 

  8. McIlwraith, M. J. et al. Human DNA polymerase η promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol. Cell 20, 783–792 (2005)

    Article  CAS  Google Scholar 

  9. Bugreev, D. V., Hanaoka, F. & Mazin, A. V. Rad54 dissociates homologous recombination intermediates by branch migration. Nature Struct. Mol. Biol. 14, 746–753 (2007)

    Article  CAS  Google Scholar 

  10. Rey, L. et al. Human DNA polymerase η is required for common fragile site stability during unperturbed DNA replication. Mol. Cell. Biol. 29, 3344–3354 (2009)

    Article  CAS  Google Scholar 

  11. Broughton, B. C. et al. Molecular analysis of mutations in DNA polymerase η in xeroderma pigmentosum-variant patients. Proc. Natl Acad. Sci. USA 99, 815–820 (2002)

    Article  CAS  ADS  Google Scholar 

  12. Tanioka, M. et al. Molecular analysis of DNA polymerase η gene in Japanese patients diagnosed as xeroderma pigmentosum variant type. J. Invest. Dermatol. 127, 1745–1751 (2007)

    Article  CAS  Google Scholar 

  13. Inui, H. et al. Xeroderma pigmentosum-variant patients from America, Europe, and Asia. J. Invest. Dermatol. 128, 2055–2068 (2008)

    Article  CAS  Google Scholar 

  14. Kusumoto, R., Masutani, C., Shimmyo, S., Iwai, S. & Hanaoka, F. DNA binding properties of human DNA polymerase η: implications for fidelity and polymerase switching of translesion synthesis. Genes Cells 9, 1139–1150 (2004)

    Article  CAS  Google Scholar 

  15. McCulloch, S. D. et al. Preferential cis-syn thymine dimer bypass by DNA polymerase η occurs with biased fidelity. Nature 428, 97–100 (2004)

    Article  CAS  ADS  Google Scholar 

  16. Yao, J., Dixon, K. & Carty, M. P. A single (6–4) photoproduct inhibits plasmid DNA replication in xeroderma pigmentosum variant cell extracts. Environ. Mol. Mutagen. 38, 19–29 (2001)

    Article  CAS  Google Scholar 

  17. Scrima, A. et al. Structural basis of UV DNA-damage recognition by the DDB1–DDB2 complex. Cell 135, 1213–1223 (2008)

    Article  CAS  Google Scholar 

  18. Sugasawa, K. XPC: its product and biological roles. Adv. Exp. Med. Biol. 637, 47–56 (2008)

    Article  CAS  Google Scholar 

  19. Yang, W. & Woodgate, R. What a difference a decade makes: insights into translesion DNA synthesis. Proc. Natl Acad. Sci. USA 104, 15591–15598 (2007)

    Article  CAS  ADS  Google Scholar 

  20. Broyde, S., Wang, L., Rechkoblit, O., Geacintov, N. E. & Patel, D. J. Lesion processing: high-fidelity versus lesion-bypass DNA polymerases. Trends Biochem. Sci. 33, 209–219 (2008)

    Article  CAS  Google Scholar 

  21. Trincao, J. et al. Structure of the catalytic core of S. cerevisiae DNA polymerase η: implications for translesion DNA synthesis. Mol. Cell 8, 417–426 (2001)

    Article  CAS  Google Scholar 

  22. Alt, A. et al. Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase η. Science 318, 967–970 (2007)

    Article  CAS  ADS  Google Scholar 

  23. Wang, L., Broyde, S. & Zhang, Y. Polymerase-tailored variations in the water-mediated and substrate-assisted mechanism for nucleotidyl transfer: insights from a study of T7 DNA polymerase. J. Mol. Biol. 389, 787–796 (2009)

    Article  CAS  Google Scholar 

  24. Ling, H., Boudsocq, F., Woodgate, R. & Yang, W. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107, 91–102 (2001)

    Article  CAS  Google Scholar 

  25. Glick, E., Vigna, K. L. & Loeb, L. A. Mutations in human DNA polymerase η motif II alter bypass of DNA lesions. EMBO J. 20, 7303–7312 (2001)

    Article  CAS  Google Scholar 

  26. Li, Y. et al. Nucleotide insertion opposite a cis-syn thymine dimer by a replicative DNA polymerase from bacteriophage T7. Nature Struct. Mol. Biol. 11, 784–790 (2004)

    Article  CAS  Google Scholar 

  27. Ling, H., Boudsocq, F., Plosky, B. S., Woodgate, R. & Yang, W. Replication of a cissyn thymine dimer at atomic resolution. Nature 424, 1083–1087 (2003)

    Article  CAS  ADS  Google Scholar 

  28. Park, H. et al. Crystal structure of a DNA decamer containing a cis-syn thymine dimer. Proc. Natl Acad. Sci. USA 99, 15965–15970 (2002)

    Article  CAS  ADS  Google Scholar 

  29. Vassylyev, D. G. et al. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell 83, 773–782 (1995)

    Article  CAS  Google Scholar 

  30. Min, J. H. & Pavletich, N. P. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449, 570–575 (2007)

    Article  CAS  ADS  Google Scholar 

  31. Mees, A. et al. Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science 306, 1789–1793 (2004)

    Article  CAS  ADS  Google Scholar 

  32. Yang, W. Poor base stacking at DNA lesions may initiate recognition by many repair proteins. DNA Repair (Amst.) 5, 654–666 (2006)

    Article  CAS  Google Scholar 

  33. Lone, S. et al. Human DNA polymerase κ encircles DNA: implications for mismatch extension and lesion bypass. Mol. Cell 25, 601–614 (2007)

    Article  CAS  Google Scholar 

  34. Bauer, J. et al. A structural gap in Dpo4 supports mutagenic bypass of a major benzo[α]pyrene dG adduct in DNA through template misalignment. Proc. Natl Acad. Sci. USA 104, 14905–14910 (2007)

    Article  CAS  ADS  Google Scholar 

  35. Jia, L., Geacintov, N. E. & Broyde, S. The N-clasp of human DNA polymerase κ promotes blockage or error-free bypass of adenine- or guanine-benzo[α]pyrenyl lesions. Nucleic Acids Res. 36, 6571–6584 (2008)

    Article  CAS  Google Scholar 

  36. Ling, H., Boudsocq, F., Woodgate, R. & Yang, W. Snapshots of replication through an abasic lesion; structural basis for base substitutions and frameshifts. Mol. Cell 13, 751–762 (2004)

    Article  CAS  Google Scholar 

  37. Wilson, R. C. & Pata, J. D. Structural insights into the generation of single-base deletions by the Y family DNA polymerase dbh. Mol. Cell 29, 767–779 (2008)

    Article  CAS  Google Scholar 

  38. Jarosz, D. F., Godoy, V. G., Delaney, J. C., Essigmann, J. M. & Walker, G. C. A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates. Nature 439, 225–228 (2006)

    Article  ADS  Google Scholar 

  39. Lehmann, A. R. et al. Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair (Amst.) 6, 891–899 (2007)

    Article  CAS  Google Scholar 

  40. Di Lucca, J. et al. Variants of the xeroderma pigmentosum variant gene (POLH) are associated with melanoma risk. Eur. J. Cancer 45, 3228–3236 (2009)

    Article  CAS  Google Scholar 

  41. Bassett, E. et al. Efficiency of extension of mismatched primer termini across from cisplatin and oxaliplatin adducts by human DNA polymerases β and η in vitro. Biochemistry 42, 14197–14206 (2003)

    Article  CAS  Google Scholar 

  42. Kokoska, R. J., McCulloch, S. D. & Kunkel, T. A. The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase η and Sulfolobus solfataricus Dpo4. J. Biol. Chem. 278, 50537–50545 (2003)

    Article  CAS  Google Scholar 

  43. Kusumoto, R., Masutani, C., Iwai, S. & Hanaoka, F. Translesion synthesis by human DNA polymerase η across thymine glycol lesions. Biochemistry 41, 6090–6099 (2002)

    Article  CAS  Google Scholar 

  44. Masutani, C., Kusumoto, R., Iwai, S. & Hanaoka, F. Mechanisms of accurate translesion synthesis by human DNA polymerase η. EMBO J. 19, 3100–3109 (2000)

    Article  CAS  Google Scholar 

  45. Wang, F. & Yang, W. Structural insight into translesion synthesis by DNA Pol II. Cell 139, 1279–1289 (2009)

    Article  Google Scholar 

  46. McCoy, A. J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D 63, 32–41 (2007)

    Article  CAS  Google Scholar 

  47. Hendrickson, W. A., Horton, J. R. & LeMaster, D. M. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672 (1990)

    Article  CAS  Google Scholar 

  48. Brünger, A. T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  49. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    Article  CAS  Google Scholar 

  50. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  51. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010)

    Article  CAS  Google Scholar 

  52. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  53. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  54. Terwilliger, T. C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  55. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007)

    CAS  Google Scholar 

  56. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007)

    Article  ADS  Google Scholar 

  57. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and themodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991)

    Article  CAS  Google Scholar 

  58. Creighton, S., Bloom, L. B. & Goodman, M. F. Gel fidelity assay measuring nucleotide misinsertion, exonucleolytic proofreading, and lesion bypass efficiencies. Methods Enzymol. 262, 232–256 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Leahy, M. Gellert and R. Craigie for critical reading of the manuscript. The research was funded by the intramural research program of NIDDK, NIH, and grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. Y.Z. is the recipient of a Chinese Ministry of Education scholarship and joint PhD student in NIH-Zhejiang University Graduate Partnership Program. S.R.-M. received a fellowship from the Human Frontiers Science Program.

Author information

Authors and Affiliations

Authors

Contributions

C.B. determined the five structures; Y.Z. prepared the samples and grew the crystals; Y.K. did the kinetic and bypass assays; S.R.-M. determined the type 1 structure; M.G. prepared the clone and type 1 crystals; J.Y.L. made mutants; C.M. designed the functional assays; A.R.L. identified the unpublished XPV mutations; F.H. conceived the project; and W.Y. supervised the structure determination. C.B., Y.Z., F.H. and W.Y. prepared the manuscript. C.B. and Y.Z. contributed equally to the study. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Fumio Hanaoka or Wei Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-9 with legends and Supplementary Tables 1-3 (PDF 4336 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biertümpfel, C., Zhao, Y., Kondo, Y. et al. Structure and mechanism of human DNA polymerase η. Nature 465, 1044–1048 (2010). https://doi.org/10.1038/nature09196

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09196

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing