Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression

Abstract

Gain-of-function mutations in leucine-rich repeat kinase 2 (LRRK2) cause familial as well as sporadic Parkinson’s disease characterized by age-dependent degeneration of dopaminergic neurons1,2. The molecular mechanism of LRRK2 action is not known. Here we show that LRRK2 interacts with the microRNA (miRNA) pathway to regulate protein synthesis. Drosophila e2f1 and dp messenger RNAs are translationally repressed by let-7 and miR-184*, respectively. Pathogenic LRRK2 antagonizes these miRNAs, leading to the overproduction of E2F1/DP, previously implicated in cell cycle and survival control3 and shown here to be critical for LRRK2 pathogenesis. Genetic deletion of let-7, antagomir-mediated blockage of let-7 and miR-184* action, transgenic expression of dp target protector, or replacement of endogenous dp with a dp transgene non-responsive to let-7 each had toxic effects similar to those of pathogenic LRRK2. Conversely, increasing the level of let-7 or miR-184* attenuated pathogenic LRRK2 effects. LRRK2 associated with Drosophila Argonaute-1 (dAgo1) or human Argonaute-2 (hAgo2) of the RNA-induced silencing complex (RISC). In aged fly brain, dAgo1 protein level was negatively regulated by LRRK2. Further, pathogenic LRRK2 promoted the association of phospho-4E-BP1 with hAgo2. Our results implicate deregulated synthesis of E2F1/DP caused by the miRNA pathway impairment as a key event in LRRK2 pathogenesis and suggest novel miRNA-based therapeutic strategies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Pathogenic LRRK2 suppresses let-7 function and interacts with RISC component Argonaute.
Figure 2: Identification of E2F1 and DP as key translational targets of pathogenic LRRK2.
Figure 3: Control of E2F1 and DP expression by miR-184* and let-7 and their regulation by pathogenic hLRRK2.
Figure 4: Regulated E2F1 and DP translation by let-7 and miR-184* impacts on dopaminergic neuron maintenance and function in vivo.

References

  1. 1

    Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607 (2004)

    CAS  Article  Google Scholar 

  2. 2

    Paisan-Ruiz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44, 595–600 (2004)

    CAS  Article  Google Scholar 

  3. 3

    Girling, R. et al. A new component of the transcription factor DRTF1/E2F. Nature 362, 83–87 (1993)

    ADS  CAS  PubMed  Article  Google Scholar 

  4. 4

    Kim, J. et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317, 1220–1224 (2007)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Schaefer, A. et al. Cerebellar neurodegeneration in the absence of microRNAs. J. Exp. Med. 204, 1553–1558 (2007)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Imai, Y. et al. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila . EMBO J. 27, 2432–2443 (2008)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Gloeckner, C. J. et al. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum. Mol. Genet. 15, 223–232 (2006)

    CAS  PubMed  Article  Google Scholar 

  8. 8

    West, A. B. et al. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl Acad. Sci. USA 102, 16842–16847 (2005)

    ADS  CAS  PubMed  Article  Google Scholar 

  9. 9

    Pillai, R. S. et al. Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309, 1573–1576 (2005)

    ADS  CAS  PubMed  Article  Google Scholar 

  10. 10

    Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Johannes, G. et al. Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc. Natl Acad. Sci. USA 96, 13118–13123 (1999)

    ADS  CAS  PubMed  Article  Google Scholar 

  12. 12

    Hoglinger, G. U. et al. The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proc. Natl Acad. Sci. USA 104, 3585–3590 (2007)

    ADS  PubMed  Article  Google Scholar 

  13. 13

    Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. & Edgar, B. A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193 (1998)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Choi, W. Y., Giraldez, A. J. & Schier, A. F. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318, 271–274 (2007)

    ADS  CAS  PubMed  Article  Google Scholar 

  15. 15

    Bilen, J. et al. MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol. Cell 24, 157–163 (2006)

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Xu, P., Vernooy, S. Y., Guo, M. & Hay, B. A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 13, 790–795 (2003)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Chan, S. P., Ramaswamy, G., Choi, E. Y. & Slack, F. J. Identification of specific let-7 microRNA binding complexes in Caenorhabditis elegans . RNA 14, 2104–2114 (2008)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Tain, L. S. et al. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nature Neurosci. 12, 1129–1135 (2009)

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Tettweiler, G. et al. Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. Genes Dev. 19, 1840–1843 (2005)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004)

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Du, W., Vidal, M., Xie, J. E. & Dyson, N. RBF, a novel RB-related gene that regulates E2F activity and interacts with cyclin E in Drosophila . Genes Dev. 10, 1206–1218 (1996)

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Asano, M., Nevins, J. R. & Wharton, R. P. Ectopic E2F expression induces S phase and apoptosis in Drosophila imaginal discs. Genes Dev. 10, 1422–1432 (1996)

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Rudel, S. et al. A multifunctional human Argonaute2-specific monoclonal antibody. RNA 14, 1244–1253 (2008)

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004)

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Martin, S. G. & St Johnston, D. A role for Drosophila LKB1 in anterior–posterior axis formation and epithelial polarity. Nature 421, 379–384 (2003)

    ADS  CAS  PubMed  Article  Google Scholar 

  26. 26

    Miron, M. et al. The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila . Nature Cell Biol. 3, 596–601 (2001)

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Liu, Z. et al. A Drosophila model for LRRK2-linked parkinsonism. Proc. Natl Acad. Sci. USA 105, 2693–2698 (2008)

    ADS  CAS  PubMed  Article  Google Scholar 

  28. 28

    Brennecke, J. et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila . Cell 113, 25–36 (2003)

    CAS  Article  Google Scholar 

  29. 29

    Sokol, N. S., Xu, P., Jan, Y. N. & Ambros, V. Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev. 22, 1591–1596 (2008)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Le Bacquer, O. et al. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J. Clin. Invest. 117, 387–396 (2007)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank R. W. Carthew, B. Dickson, B. Edgar, D. St Johnston, N. Sonenberg, W. Smith, Z. Zhang, H. Siomi, B. Hay, S. Cohen, the Vienna Drosophila RNAi Center and the Bloomington Drosophila Stock Center for fly stocks and cell line, and Bestgene Inc. for help with making gDPwt and gDPmut transgenics; N. J. Dyson, R. P. Wharton, C. Zeng, G. Meister and Y. Liu for antibodies; T. Tuschl, P. A. Sharp and Y. Tomari for plasmids; P. Sarnow and R. Cevallos for advice on polysome preparation; S. Guo and A. Fire for reading the manuscript; W. Lee and G. Silverio for technical support; and members of the Lu laboratory for discussions. This work was supported by the National Institutes of Health (R01AR054926, R01MH080378 and R21NS056878), the McKnight, Beckman and Sloan Foundations (B.L.), and the Program for Young Researchers from Special Coordination Funds for Promoting Science and Technology commissioned by MEXT in Japan and an Asahi Glass Foundation Research Grant (Y.I).

Author information

Affiliations

Authors

Contributions

S.G. designed and performed the experiments and wrote the manuscript; Y.I. performed the experiments; N.S. provided key reagents and advice; B.L. designed the experiments, wrote the paper and provided funding.

Corresponding authors

Correspondence to Stephan Gehrke or Bingwei Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S19 and Supplementary Table 1. (PDF 1746 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gehrke, S., Imai, Y., Sokol, N. et al. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466, 637–641 (2010). https://doi.org/10.1038/nature09191

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing