Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Following a chemical reaction using high-harmonic interferometry


The study of chemical reactions on the molecular (femtosecond) timescale typically uses pump laser pulses to excite molecules and subsequent probe pulses to interrogate them. The ultrashort pump pulse can excite only a small fraction of molecules, and the probe wavelength must be carefully chosen to discriminate between excited and unexcited molecules. The past decade has seen the emergence of new methods that are also aimed at imaging chemical reactions as they occur, based on X-ray diffraction1, electron diffraction2 or laser-induced recollision3,4—with spectral selection not available for any of these new methods. Here we show that in the case of high-harmonic spectroscopy based on recollision, this apparent limitation becomes a major advantage owing to the coherent nature of the attosecond high-harmonic pulse generation. The coherence allows the unexcited molecules to act as local oscillators against which the dynamics are observed, so a transient grating technique5,6 can be used to reconstruct the amplitude and phase of emission from the excited molecules. We then extract structural information from the amplitude, which encodes the internuclear separation, by quantum interference at short times and by scattering of the recollision electron at longer times. The phase records the attosecond dynamics of the electrons, giving access to the evolving ionization potentials and the electronic structure of the transient molecule. In our experiment, we are able to document a temporal shift of the high-harmonic field of less than an attosecond (1 as = 10−18 s) between the stretched and compressed geometry of weakly vibrationally excited Br2 in the electronic ground state. The ability to probe structural and electronic features, combined with high time resolution, make high-harmonic spectroscopy ideally suited to measuring coupled electronic and nuclear dynamics occurring in photochemical reactions and to characterizing the electronic structure of transition states.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: High-harmonic interferometry of dissociating Br2.
Figure 2: High-harmonic transient grating spectroscopy.
Figure 3: Reconstruction of high-harmonic phases and amplitudes.
Figure 4: Vibration-induced modulation of the high-harmonic phase.


  1. 1

    Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Ihee, H. et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 458–462 (2001)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Meckel, M. et al. Laser-induced electron tunnelling and diffraction. Science 320, 1478–1482 (2008)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Eichler, H. J., Gunter, P. & Pohl, D. W. Laser-Induced Dynamic Gratings Ch. 2–4 (Springer, 1986)

    Book  Google Scholar 

  6. 6

    Mairesse, Y. et al. High-order harmonic transient grating spectroscopy in a molecular jet. Phys. Rev. Lett. 100, 143903 (2008)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Itatani, J. et al. Controlling high harmonic generation with molecular wave packets. Phys. Rev. Lett. 94, 123902 (2005)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Kanai, T., Minemoto, S. & Sakai, H. Quantum interference during high-order harmonic generation from aligned molecules. Nature 435, 470–474 (2005)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Wagner, N. L. et al. Monitoring molecular dynamics using coherent electrons from high harmonic generation. Proc. Natl Acad. Sci. USA 103, 13279–13285 (2006)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Li, W. et al. Time-resolved dynamics in N2O4 probed using high harmonic generation. Science 322, 1207–1211 (2008)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Le, V. H., Le, A. T., Xie, R. H. & Lin, C. D. Theoretical analysis of dynamic chemical imaging using high-order harmonic generation. Phys. Rev. A 76, 013414 (2007)

    ADS  Article  Google Scholar 

  12. 12

    Rakitzis, T. P. & Kitsopoulos, T. N. Measurement of Cl and Br photofragment alignment using slice imaging. J. Chem. Phys. 116, 9228–9231 (2002)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Kanai, T., Takahashi, E. J., Nabekawa, Y. & Midorikawa, K. Destructive interference during high harmonic generation in mixed gases. Phys. Rev. Lett. 98, 153904 (2007)

    ADS  Article  Google Scholar 

  14. 14

    Wörner, H. J., Niikura, H., Bertrand, J. B., Corkum, P. B. & Villeneuve, D. M. Observation of electronic structure minima in high-harmonic generation. Phys. Rev. Lett. 102, 103901 (2009)

    ADS  Article  Google Scholar 

  15. 15

    Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Lein, M., Hay, N., Velotta, R., Marangos, J. P. & Knight, P. L. Role of the intramolecular phase in high-harmonic generation. Phys. Rev. Lett. 88, 183903 (2002)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Nugent-Glandorf, L. et al. Ultrafast time-resolved soft x-ray photoelectron spectroscopy of dissociating Br2 . Phys. Rev. Lett. 87, 193002 (2001)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Nugent-Glandorf, L., Scheer, M., Samuels, D. A., Bierbaum, V. M. & Leone, S. R. Ultrafast photodissociation of Br2: laser-generated high-harmonic soft x-ray probing of the transient photoelectron spectra and ionization cross sections. J. Chem. Phys. 117, 6108–6116 (2002)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Wernet, P. et al. Real-time evolution of the valence electronic structure in a dissociating molecule. Phys. Rev. Lett. 103, 013001 (2009)

    ADS  Article  Google Scholar 

  21. 21

    Zimmermann, B. et al. Localization and loss of coherence in molecular double-slit experiments. Nature Phys. 4, 649–655 (2008)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Huber, K. P. & Herzberg, G. Molecular Spectra and Molecular Structure Vol. IV, Constants of Diatomic Molecules 106–108 (Van Nostrand Reinhold, 1979)

    Book  Google Scholar 

  23. 23

    Gessner, O. et al. Femtosecond multi-dimensional imaging of a molecular dissociation. Science 311, 219–222 (2006)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Bisgaard, C. Z. et al. Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules. Science 323, 1464–1468 (2009)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Wang, Z.-M. & Elliott, D. S. Determination of cross sections and continuum phases of rubidium through complete measurements of atomic multiphoton ionization. Phys. Rev. Lett. 84, 3795–3798 (2000)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Park, H. & Zare, R. N. Molecular-orbital decomposition of the ionization continuum for a diatomic molecule by angle- and energy-resolved photoelectron spectroscopy. II. Ionization continuum of NO. J. Chem. Phys. 104, 4568–4580 (1996)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Lezius, M. et al. Nonadiabatic multielectron dynamics in strong field molecular ionization. Phys. Rev. Lett. 86, 51–54 (2001)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Litvinyuk, I. V. et al. Shakeup excitation during optical tunnel ionization. Phys. Rev. Lett. 94, 033003 (2005)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Domcke, W., Yarkony, D. R. & Köppel, H. (eds) Conical Intersections: Electronic Structure, Dynamics and Spectroscopy (Adv. Ser. in Phys. Chem., Vol. 15, World Scientific, 2004)

    Book  Google Scholar 

  30. 30

    Bucksbaum, P. H. The future of attosecond spectroscopy. Science 317, 766–769 (2007)

    ADS  CAS  Article  Google Scholar 

Download references


Funding from Canadian Institute for Photonic Innovation, NSERC and AFOSR is acknowledged. H.J.W. thanks the Swiss National Science Foundation (SNF) for a fellowship.

Author information




D.M.V. proposed the experiment. H.J.W. and J.B.B. performed the experiments. J.B.B. assembled the transient grating set-up. H.J.W. proposed and conducted the data analysis. J.B.B. and D.V.K. performed a preliminary experiment. D.M.V. and H.J.W. did the theoretical calculations. H.J.W., J.B.B, P.B.C. and D.M.V. interpreted the data and wrote the Letter.

Corresponding author

Correspondence to D. M. Villeneuve.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S5 with legends, Supplementary Theoretical Information (1-5), Supplementary Experimental Data (6), Supplementary Results (7) and References. (PDF 984 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wörner, H., Bertrand, J., Kartashov, D. et al. Following a chemical reaction using high-harmonic interferometry. Nature 466, 604–607 (2010).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing