Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A new DAF-16 isoform regulates longevity


The insulin/IGF-1 signalling (IIS) pathway has diverse roles from metabolism to longevity1,2,3,4,5. In Caenorhabditis elegans, the single forkhead box O (FOXO) homologue, DAF-16, functions as the major target of the IIS pathway2,3,6,7. One of two isoforms4,5,8, DAF-16a, is known to regulate longevity, stress response and dauer diapause8,9,10,11. However, it remains unclear how DAF-16 achieves its specificity in regulating these various biological processes. Here we identify a new isoform, DAF-16d/f, as an important isoform regulating longevity. We show that DAF-16 isoforms functionally cooperate to modulate IIS-mediated processes through differential tissue enrichment, preferential modulation by upstream kinases, and regulating distinct and overlapping target genes. Promoter-swapping experiments show both the promoter and the coding region of DAF-16 are important for its function. Importantly, in mammals, four FOXO genes have overlapping and different functions6,12, and in C. elegans, a single FOXO/DAF-16 uses distinct isoforms to fine-tune the IIS-mediated processes in the context of a whole organism.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: New daf-16 isoform regulates lifespan in C. elegans.
Figure 2: Multiple DAF-16 isoforms cooperatively regulate the IIS-mediated processes.
Figure 3: Both the N terminus and the promoter define the specificity of DAF-16 isoforms.
Figure 4: Specific and overlapping target gene regulation by DAF-16 isoform.


  1. 1

    Calnan, D. R. & Brunet, A. The FoxO code. Oncogene 27, 2276–2288 (2008)

    CAS  Article  Google Scholar 

  2. 2

    Antebi, A. Genetics of aging in Caenorhabditis elegans . PLoS Genet. 3, e129 (2007)

    Article  Google Scholar 

  3. 3

    Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Lin, K., Dorman, J. B., Rodan, A. & Kenyon, C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans . Science 278, 1319–1322 (1997)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans . Nature 389, 994–999 (1997)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Narasimhan, S. D., Yen, K. & Tissenbaum, H. A. Converging pathways in lifespan regulation. Curr. Biol. 19, R657–R666 (2009)

    CAS  Article  Google Scholar 

  7. 7

    Mukhopadhyay, A., Oh, S. W. & Tissenbaum, H. A. Worming pathways to and from DAF-16/FOXO. Exp. Gerontol. 41, 928–934 (2006)

    CAS  Article  Google Scholar 

  8. 8

    Lin, K., Hsin, H., Libina, N. & Kenyon, C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nature Genet. 28, 139–145 (2001)

    CAS  Article  Google Scholar 

  9. 9

    Henderson, S. T. & Johnson, T. E. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans . Curr. Biol. 11, 1975–1980 (2001)

    CAS  Article  Google Scholar 

  10. 10

    Lee, R. Y., Hench, J. & Ruvkun, G. Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr. Biol. 11, 1950–1957 (2001)

    CAS  Article  Google Scholar 

  11. 11

    Libina, N., Berman, J. R. & Kenyon, C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115, 489–502 (2003)

    CAS  Article  Google Scholar 

  12. 12

    Arden, K. C. FOXO animal models reveal a variety of diverse roles for FOXO transcription factors. Oncogene 27, 2345–2350 (2008)

    CAS  Article  Google Scholar 

  13. 13

    Oh, S. W. et al. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc. Natl Acad. Sci. USA 102, 4494–4499 (2005)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Lehtinen, M. K. et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125, 987–1001 (2006)

    CAS  Article  Google Scholar 

  15. 15

    Berdichevsky, A., Viswanathan, M., Horvitz, H. R. & Guarente, L. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125, 1165–1177 (2006)

    CAS  Article  Google Scholar 

  16. 16

    Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Lee, S. S., Kennedy, S., Tolonen, A. C. & Ruvkun, G. DAF-16 target genes that control C. elegans life-span and metabolism. Science 300, 644–647 (2003)

    ADS  CAS  Article  Google Scholar 

  18. 18

    McElwee, J., Bubb, K. & Thomas, J. H. Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2, 111–121 (2003)

    CAS  Article  Google Scholar 

  19. 19

    Murphy, C. T. et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans . Nature 424, 277–283 (2003)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Herman, R. K. Mosaic analysis. Methods Cell Biol. 48, 123–146 (1995)

    CAS  Article  Google Scholar 

  21. 21

    Padmanabhan, S. et al. A PP2A regulatory subunit regulates C. elegans insulin/IGF-1 signaling by modulating AKT-1 phosphorylation. Cell 136, 939–951 (2009)

    CAS  Article  Google Scholar 

  22. 22

    Riddle, D. L. & Albert, P. S. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 739–768 (Cold Spring Harbor Laboratory Press, 1997)

    Google Scholar 

  23. 23

    Honda, Y. & Honda, S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans . FASEB J. 13, 1385–1393 (1999)

    CAS  Article  Google Scholar 

  24. 24

    Murakami, S. & Johnson, T. E. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans . Genetics 143, 1207–1218 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans . Science 277, 942–946 (1997)

    CAS  Article  Google Scholar 

  26. 26

    Soukas, A. A., Kane, E. A., Carr, C. E., Melo, J. A. & Ruvkun, G. Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans . Genes Dev. 23, 496–511 (2009)

    CAS  Article  Google Scholar 

  27. 27

    Oh, S. W. et al. Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nature Genet. 38, 251–257 (2005)

    PubMed  Google Scholar 

  28. 28

    Stiernagle, T. Maintenance of C. elegans . WormBook 10.1895/wormbook.1.101.1 (2006)

  29. 29

    Hosono, R., Mitsui, Y., Sato, Y., Aizawa, S. & Miwa, J. Life span of the wild and mutant nematode Caenorhabditis elegans. Effects of sex, sterilization, and temperature. Exp. Gerontol. 17, 163–172 (1982)

    CAS  Article  Google Scholar 

  30. 30

    Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991)

    CAS  Article  Google Scholar 

Download references


We are grateful to A. Mukhopadhyay and S. Padmanabhan for advice, M. Green and M. Walhout for advice and comments on the manuscript and N. Bhabhalia for technical support. We thank M. Grabowski Auclair for generating several strains used in this manuscript and G. Ruvkun and M. Walhout for plasmids and strains. We apologize to all those whose original work was not cited because of space limitations. Some of the strains were provided by T. Stiernagle at the Caenorhabditis Genetics Center, which is funded by the National Institutes of Health National Center for Research Resources. H.A.T. is a William Randolph Hearst Young Investigator. This project was funded in part by grants from the National Institute of Aging AG025891 and AG031237), the Glenn Foundation for Medical Research, the Ellison Medical Foundation and an endowment from the William Randolph Hearst Foundation.

Author information




E.-S.K. and H.A.T. designed the experiments and analysed the data. E.-S.K., S.D.N. and K.Y. performed the experiments. E.-S.K., S.D.N., K.Y. and H.A.T. wrote the manuscript.

Corresponding author

Correspondence to Heidi A. Tissenbaum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-15 with legends. (PDF 3414 kb)

Supplementary Information

This file contains Supplementary Data, a Supplementary Discussion, Supplementary Methods, Supplementary Tables 1-5 and References. (PDF 353 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kwon, ES., Narasimhan, S., Yen, K. et al. A new DAF-16 isoform regulates longevity. Nature 466, 498–502 (2010).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links