Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct generation of photon triplets using cascaded photon-pair sources

Abstract

Non-classical states of light, such as entangled photon pairs and number states, are essential for fundamental tests of quantum mechanics and optical quantum technologies. The most widespread technique for creating these quantum resources is spontaneous parametric down-conversion of laser light into photon pairs1. Conservation of energy and momentum in this process, known as phase-matching, gives rise to strong correlations that are used to produce two-photon entanglement in various degrees of freedom2,3,4,5,6,7,8,9. It has been a longstanding goal in quantum optics to realize a source that can produce analogous correlations in photon triplets, but of the many approaches considered, none has been technically feasible10,11,12,13,14,15,16,17. Here we report the observation of photon triplets generated by cascaded down-conversion. Each triplet originates from a single pump photon, and therefore quantum correlations will extend over all three photons18 in a way not achievable with independently created photon pairs19. Our photon-triplet source will allow experimental interrogation of novel quantum correlations20, the generation of tripartite entanglement12,21 without post-selection and the generation of heralded entangled photon pairs suitable for linear optical quantum computing22. Two of the triplet photons have a wavelength matched for optimal transmission in optical fibres, suitable for three-party quantum communication23. Furthermore, our results open interesting regimes of non-linear optics, as we observe spontaneous down-conversion pumped by single photons, an interaction also highly relevant to optical quantum computing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of photon-triplet generation and experimental set-up.
Figure 2: Triple-coincidence histograms.
Figure 3: Phase-matching and triple-coincidence dependence on crystal temperatures.

Similar content being viewed by others

References

  1. Klyshko, D. N. Coherent photon decay in a nonlinear medium. JETP Lett. 6, 23–25 (1967)

    ADS  Google Scholar 

  2. Ou, Z. Y. & Mandel, L. Violation of Bell’s inequality and classical probability in a two-photon correlation experiment. Phys. Rev. Lett. 61, 50–53 (1988)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Shih, Y.-H. & Alley, C. O. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988)

    Article  ADS  CAS  Google Scholar 

  4. Rarity, J. G. et al. Two-photon interference in a Mach-Zehnder interferometer. Phys. Rev. Lett. 65, 1348–1351 (1990)

    Article  ADS  CAS  Google Scholar 

  5. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Brendel, J., Gisin, N., Tittel, W. & Zbinden, H. Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594–2597 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 312–316 (2001)

    Article  ADS  Google Scholar 

  8. Barreiro, J. T., Langford, N. K., Peters, N. A. & Kwiat, P. G. Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005)

    Article  ADS  Google Scholar 

  9. Ramelow, S., Ratschbacher, L., Fedrizzi, A., Langford, N. K. & Zeilinger, A. Discrete tunable color entanglement. Phys. Rev. Lett. 103, 253601 (2009)

    Article  ADS  CAS  Google Scholar 

  10. Rarity, J. G. & Tapster, P. R. Three-particle entanglement from entangled photon pairs and a weak coherent state. Phys. Rev. A 59, R35–R38 (1998)

    Article  ADS  Google Scholar 

  11. Persson, J., Aichel, T., Zwiller, V., Samuelson, L. & Benson, O. Three-photon cascade from single self-assembled InP quantum dots. Phys. Rev. B 69, 233314 (2004)

    Article  ADS  Google Scholar 

  12. Greenberger, D. M., Horne, M. A., Shimony, A. & Zeilinger, A. Bell's theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  13. Keller, T. E., Rubin, M. H., Shih, Y. & Wu, L. A. Theory of the three-photon entangled state. Phys. Rev. A 57, 2076–2079 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Gupta, S. N. Multiple photon production in electron-positron annihilation. Phys. Rev. 96, 1453 (1954)

    Article  ADS  CAS  Google Scholar 

  15. Douady, J. & Boulanger, B. Experimental demonstration of a pure third-order optical parametric downconversion process. Opt. Lett. 29, 2794–2796 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Bencheikh, K., Gravier, F., Douady, J., Levenson, A. & Boulanger, B. Triple photons: a challenge in nonlinear and quantum optics. C. R. Phys. 8, 206–220 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Guo, H. C., Qin, Y. Q. & Tang, S. H. Parametric downconversion via cascaded optical nonlinearities in an aperiodically poled MgO:LiNbO3 superlattice. Appl. Phys. Lett. 87, 161101 (2005)

    Article  ADS  Google Scholar 

  18. Munro, W. J. & Milburn, G. J. Characterizing Greenberger-Horne-Zeilinger correlations in nondegenerate parametric oscillation via phase measurements. Phys. Rev. Lett. 81, 4285–4288 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Zukowski, M., Zeilinger, A. & Weinfurter, H. in Fundamental Problems in Quantum Theory: A Conference Held in Honour of Professor John A. Wheeler (eds Greenberger, D. & Zeilinger, A.) 91–102 (NY Acad. Sci., 1995)

    Google Scholar 

  20. Banaszek, K. & Knight, P. L. Quantum interference in three-photon down-conversion. Phys. Rev. A 55, 2368–2375 (1997)

    Article  ADS  CAS  Google Scholar 

  21. Zeilinger, A., Horne, M. & Greenberger, D. M. Higher-order quantum entanglement. NASA Conf. Publ. 3135, 73–81 (1992)

    Google Scholar 

  22. Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)

    Article  ADS  Google Scholar 

  23. Hillery, M., Bužek, V. & Berthiaume, A. Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. Burnham, D. C. & Weinberg, D. L. Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 28, 84–87 (1970)

    Article  ADS  Google Scholar 

  25. Kurtsiefer, C., Oberparleiter, M. & Weinfurter, H. Generation of correlated photon pairs in type-II parametric down conversion—revisited. J. Mod. Opt. 48, 1997–2007 (2001)

    ADS  CAS  Google Scholar 

  26. Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T. & Zeilinger, A. A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Exp. 15, 15377–15386 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Tanzilli, S. et al. Highly efficient photon-pair source using periodically poled lithium niobate waveguide. Electron. Lett. 37, 26–28 (2001)

    Article  CAS  Google Scholar 

  28. Kurtsiefer, C., Zarda, P., Mayer, S. & Weinfurter, H. The breakdown flash of silicon avalanche photodiodes–back door for eavesdropper attacks? J. Mod. Opt. 48, 2039–2047 (2001)

    Article  ADS  Google Scholar 

  29. Kwiat, P. G. Hyper-entangled states. J. Mod. Opt. 44, 2173–2184 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  30. Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H. & Zeilinger, A. Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  31. Kiesel, N. et al. Three-photon W-state. J. Mod. Opt. 50, 1131–1138 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank H. Majedi and G. Weihs for providing equipment and infrastructure for implementing the experiment. Gratefully acknowledged is the financial support by the Canadian Institute for Advanced Research, the Ontario Centres of Excellence, the Ontario Ministry of Research and Innovation, the Natural Sciences and Engineering Council of Canada and the Canadian Foundation for Innovation. S.R. acknowledges support from the FWF (CoQus).

Author information

Authors and Affiliations

Authors

Contributions

H.H. and D.R.H. performed the experiment and analysed the data; A.F. and S.R. participated in the design of the experiment; K.J.R. and T.J. contributed to the design and realization of the experiment; and all authors co-wrote the paper.

Corresponding authors

Correspondence to Hannes Hübel or Thomas Jennewein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Calculations. (PDF 87 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hübel, H., Hamel, D., Fedrizzi, A. et al. Direct generation of photon triplets using cascaded photon-pair sources. Nature 466, 601–603 (2010). https://doi.org/10.1038/nature09175

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09175

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing