Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase

Abstract

Hypoxia-inducible factor (HIF) is a transcription factor that regulates fundamental cellular processes in response to changes in oxygen concentration. HIFα protein levels are increased in most solid tumours and correlate with patient prognosis. The link between HIF and apoptosis, a major determinant of cancer progression and treatment outcome, is poorly understood. Here we show that Caenorhabditis elegans HIF-1 protects against DNA-damage-induced germ cell apoptosis by antagonizing the function of CEP-1, the homologue of the tumour suppressor p53. The antiapoptotic property of HIF-1 is mediated by means of transcriptional upregulation of the tyrosinase family member TYR-2 in the ASJ sensory neurons. TYR-2 is secreted by ASJ sensory neurons to antagonize CEP-1-dependent germline apoptosis. Knock down of the TYR-2 homologue TRP2 (also called DCT) in human melanoma cells similarly increases apoptosis, indicating an evolutionarily conserved function. Our findings identify a novel link between hypoxia and programmed cell death, and provide a paradigm for HIF-1 dictating apoptotic cell fate at a distance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HIF-1 antagonizes DNA-damage-induced apoptosis.
Figure 2: HIF-1 impedes DNA-damage-induced apoptosis by inhibiting CEP-1.
Figure 3: The antiapoptotic function of HIF-1 is mediated by a concerted action of TYR-2 and TYR-3.
Figure 4: HIF-1 drives tyr-2 expression in ASJ neurons.
Figure 5: TYR-2 is a l -dopachrome tautomerase secreted by the ASJ neurons to inhibit apoptosis.

Similar content being viewed by others

References

  1. Epstein, A. C. et al. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. Bruick, R. K. & McKnight, S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ivan, M. et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl Acad. Sci. USA 99, 13459–13464 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu, F., White, S. B., Zhao, Q. & Lee, F. S. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl Acad. Sci. USA 98, 9630–9635 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Höckel, M. & Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl Cancer Inst. 93, 266–276 (2001)

    Article  PubMed  Google Scholar 

  7. Zhong, H. et al. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res. 59, 5830–5835 (1999)

    CAS  PubMed  Google Scholar 

  8. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003)

    Article  CAS  Google Scholar 

  9. Johnstone, R. W., Ruefli, A. A. & Lowe, S. W. Apoptosis: a link between cancer genetics and chemotherapy. Cell 108, 153–164 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Jiang, H., Guo, R. & Powell-Coffman, J. A. The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia. Proc. Natl Acad. Sci. USA 98, 7916–7921 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gumienny, T. L., Lambie, E., Hartwieg, E., Horvitz, H. R. & Hengartner, M. O. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126, 1011–1022 (1999)

    CAS  PubMed  Google Scholar 

  12. Gartner, A., Milstein, S., Ahmed, S., Hodgkin, J. & Hengartner, M. O. A conserved checkpoint pathway mediates DNA damage-induced apoptosis and cell cycle arrest in C. elegans . Mol. Cell 5, 435–443 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Derry, W. B., Putzke, A. P. & Rothman, J. H. Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science 294, 591–595 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Horn, H. F. & Vousden, K. H. Coping with stress: multiple ways to activate p53. Oncogene 26, 1306–1316 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. Quevedo, C., Kaplan, D. R. & Derry, W. B. AKT-1 regulates DNA-damage-induced germline apoptosis in C. elegans . Curr. Biol. 17, 286–292 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. Bishop, T. et al. Genetic analysis of pathways regulated by the von Hippel-Lindau tumor suppressor in Caenorhabditis elegans . PLoS Biol. 2, e289 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shen, C., Nettleton, D., Jiang, M., Kim, S. K. & Powell-Coffman, J. A. Roles of the HIF-1 hypoxia-inducible factor during hypoxia response in Caenorhabditis elegans . J. Biol. Chem. 280, 20580–20588 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. Hedgecock, E. M., Culotti, J. G., Thomson, J. N. & Perkins, L. A. Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev. Biol. 111, 158–170 (1985)

    Article  CAS  PubMed  Google Scholar 

  19. Wang, N. & Hebert, D. N. Tyrosinase maturation through the mammalian secretory pathway: bringing color to life. Pigment Cell Res. 19, 3–18 (2006)

    Article  PubMed  Google Scholar 

  20. Xu, Y., Setaluri, V., Takechi, Y. & Houghton, A. N. Sorting and secretion of a melanosome membrane protein, gp75/TRP1. J. Invest. Dermatol. 109, 788–795 (1997)

    Article  CAS  PubMed  Google Scholar 

  21. Grant, B. & Hirsh, D. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol. Biol. Cell 10, 4311–4326 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. del Marmol, V. & Beermann, F. Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett. 381, 165–168 (1996)

    Article  CAS  PubMed  Google Scholar 

  23. Tsukamoto, K., Jackson, I. J., Urabe, K., Montague, P. M. & Hearing, V. J. A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J. 11, 519–526 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gray, J. M. et al. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430, 317–322 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Chang, A. J. & Bargmann, C. I. Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans . Proc. Natl Acad. Sci. USA 105, 7321–7326 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ward, A., Liu, J., Feng, Z. & Xu, X. Z. Light-sensitive neurons and channels mediate phototaxis in C. elegans . Nature Neurosci. 11, 916–922 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. Bargmann, C. I. & Horvitz, H. R. Control of larval development by chemosensory neurons in Caenorhabditis elegans . Science 251, 1243–1246 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Ito, S., Kato, T., Shinpo, K. & Fujita, K. Oxidation of tyrosine residues in proteins by tyrosinase. Formation of protein-bonded 3,4-dihydroxyphenylalanine and 5-S-cysteinyl-3,4-dihydroxyphenylalanine. Biochem. J. 222, 407–411 (1984)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Freddi, G. et al. Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: grafting of chitosan under heterogeneous reaction conditions. J. Biotechnol. 125, 281–294 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. Chu, W. et al. Tyrosinase-related protein 2 as a mediator of melanoma specific resistance to cis-diamminedichloroplatinum(II): therapeutic implications. Oncogene 19, 395–402 (2000)

    Article  CAS  PubMed  Google Scholar 

  31. Montano, X., Shamsher, M., Whitehead, P., Dawson, K. & Newton, J. Analysis of p53 in human cutaneous melanoma cell lines. Oncogene 9, 1455–1459 (1994)

    CAS  PubMed  Google Scholar 

  32. Wellbrock, C. et al. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS ONE 3, e2734 (2008)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Bertolotto, C. et al. Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol. Cell. Biol. 18, 694–702 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ying-Tao, Z., Yi-Ping, G., Lu-Sheng, S. & Yi-Li, W. Proteomic analysis of differentially expressed proteins between metastatic and non-metastatic human colorectal carcinoma cell lines. Eur. J. Gastroenterol. Hepatol. 17, 725–732 (2005)

    Article  PubMed  Google Scholar 

  36. Brenner, S. The genetics of Caenorhabditis elegans . Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Avery, L. & Horvitz, H. R. Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans . Neuron 3, 473–485 (1989)

    Article  CAS  PubMed  Google Scholar 

  39. Hofmann, E. R. et al. Caenorhabditis elegans HUS-1 is a DNA damage checkpoint protein required for genome stability and EGL-1-mediated apoptosis. Curr. Biol. 12, 1908–1918 (2002)

    Article  CAS  PubMed  Google Scholar 

  40. Schumacher, B. et al. Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis. Cell 120, 357–368 (2005)

    Article  CAS  PubMed  Google Scholar 

  41. Palumbo, A., d’Ischia, M., Misuraca, G. & Prota, G. Effect of metal ions on the rearrangement of dopachrome. Biochim. Biophys. Acta 925, 203–209 (1987)

    Article  CAS  PubMed  Google Scholar 

  42. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nature Genet. 37, 1289–1295 (2005)

    Article  CAS  PubMed  Google Scholar 

  44. Silva, J. M. et al. Second-generation shRNA libraries covering the mouse and human genome. Nature Genet. 37, 1281–1288 (2005)

    Article  CAS  PubMed  Google Scholar 

  45. Serrano, M. et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997)

    Article  CAS  PubMed  Google Scholar 

  46. Zuber, J. et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev. 23, 877–889 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Lazebnik, A. Gartner, A. Hajnal, J. Jiricny, R. Wenger and C. Mosimann for critical reading of the manuscript. We are grateful to S. Schrimpf, L. Stergiou, E. Bogan, S. Egger, O. Georgiev, M. Moser and Hengartner, Hajnal and Lowe laboratory members for help and discussions. We thank Y. Auchli and P. Hunziker from the Functional Genomics Center Zurich for protein analysis. We are grateful to V. Hearing and J. Valencia for the TRP2 antibody and help. This work was supported by the Swiss National Science Foundation, the Kanton of Zurich and the Josef-Steiner Foundation. M.O.H. is Ernst Hadorn endowed Professor of Molecular Biology. A.S. was supported by Oncosuisse and the Swiss National Science Foundation. Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR).

Author information

Authors and Affiliations

Authors

Contributions

A.S. designed experiments, performed most of the experiments and analysed data; I.K. generated opIs425 transgenic animals and performed experiments; C.F. established shRNA melanoma cell lines and helped to perform melanoma experiments; S.W.L. contributed to the design of melanoma experiments and analysed data; M.O.H. designed experiments and analysed the data. A.S. and M.O.H. wrote the paper.

Corresponding author

Correspondence to Michael O. Hengartner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-21 with legends, Supplementary Tables 1-2 and References. (PDF 4900 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sendoel, A., Kohler, I., Fellmann, C. et al. HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase. Nature 465, 577–583 (2010). https://doi.org/10.1038/nature09141

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09141

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing