Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Real-space observation of a two-dimensional skyrmion crystal


Crystal order is not restricted to the periodic atomic array, but can also be found in electronic systems such as the Wigner crystal1 or in the form of orbital order2, stripe order3 and magnetic order. In the case of magnetic order, spins align parallel to each other in ferromagnets and antiparallel in antiferromagnets. In other, less conventional, cases, spins can sometimes form highly nontrivial structures called spin textures4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23. Among them is the unusual, topologically stable skyrmion spin texture, in which the spins point in all the directions wrapping a sphere4,5,6,7. The skyrmion configuration in a magnetic solid is anticipated to produce unconventional spin–electronic phenomena such as the topological Hall effect24,25,26. The crystallization of skyrmions as driven by thermal fluctuations has recently been confirmed in a narrow region of the temperature/magnetic field (TB) phase diagram in neutron scattering studies of the three-dimensional helical magnets MnSi (ref. 17) and Fe1−xCo x Si (ref. 22). Here we report real-space imaging of a two-dimensional skyrmion lattice in a thin film of Fe0.5Co0.5Si using Lorentz transmission electron microscopy. With a magnetic field of 50–70 mT applied normal to the film, we observe skyrmions in the form of a hexagonal arrangement of swirling spin textures, with a lattice spacing of 90 nm. The related TB phase diagram is found to be in good agreement with Monte Carlo simulations. In this two-dimensional case, the skyrmion crystal seems very stable and appears over a wide range of the phase diagram, including near zero temperature. Such a controlled nanometre-scale spin topology in a thin film may be useful in observing unconventional magneto-transport effects.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Topological spin textures in the helical magnet Fe 0.5 Co 0.5 Si.
Figure 2: Variations of spin texture with magnetic field and temperature in Fe 0.5 Co 0.5 Si.
Figure 3: Phase diagrams of magnetic structure and spin textures in a thin film of Fe 0.5 Co 0.5 Si.


  1. Wigner, E. P. On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934)

    Article  ADS  CAS  Google Scholar 

  2. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Tranquada, J. M. et al. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995)

    Article  ADS  Google Scholar 

  4. Skyrme, T. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962)

    Article  MathSciNet  CAS  Google Scholar 

  5. Rajaraman, R. Solitons and Instantons 115–123 (Elsevier, 1987)

    MATH  Google Scholar 

  6. Sondhi, S. L., Karlhede, A., Kivleson, S. A. & Rezayi, E. H. Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B 47, 16419–16426 (1993)

    Article  ADS  CAS  Google Scholar 

  7. Bogdanov, A. N. & Yablonskiî, D. A. Thermodynamically stable “vortices” in magnetically ordered crystals. The mixed state of magnets. Sov. Phys. JETP 68, 101–103 (1989)

    Google Scholar 

  8. Ho, T. L. Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742–745 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Senthil, T., Vishwanath, A., Balents, L., Sachdev, S. & Fisher, M. P. A. Deconfined quantum critical points. Science 303, 1490–1494 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Ishikawa, Y., Tajima, K., Bloch, D. & Roth, M. Helical spin structure in manganese silicide MnSi. Solid State Commun. 19, 525–528 (1976)

    Article  ADS  CAS  Google Scholar 

  11. Ishikawa, Y. & Arai, M. Magnetic phase diagram of MnSi near critical temperature studied by neutron small angle scattering. J. Phys. Soc. Jpn 53, 2726–2733 (1984)

    Article  ADS  CAS  Google Scholar 

  12. Lebech, B. et al. Magnetic phase diagram of MnSi. J. Magn. Magn. Mater. 140–144, 119–120 (1995)

    Article  ADS  Google Scholar 

  13. Ishimoto, K. et al. Small-angle neutron diffraction from the helical magnet Fe0. 8Co0. 2Si. Physica B 213–214, 381–383 (1995)

    Article  ADS  Google Scholar 

  14. Pfleiderer, C. et al. Partial order in the non-Fermi-liquid phase of MnSi. Nature 427, 227–231 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006)

    Article  ADS  Google Scholar 

  16. Binz, B., Vishwanath, A. & Aji, V. Theory of the helical spin crystal: a candidate for the partially ordered state of MnSi. Phys. Rev. Lett. 96, 207202 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009)

    Article  ADS  Google Scholar 

  18. Uchida, M., Onose, Y., Matsui, Y. & Tokura, Y. Real-space observation of helical spin order. Science 311, 359–361 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Grigoriev, S. V. et al. Magnetic structure of Fe1-x Co x Si in a magnetic field studied via small-angle polarized neutron diffraction. Phys. Rev. B 76, 224424 (2007)

    Article  ADS  Google Scholar 

  20. Grigoriev, S. V. et al. Crystal handedness and spin helix chirality in Fe1-x Co x Si. Phys. Rev. Lett. 102, 037204 (2009)

    Article  ADS  CAS  Google Scholar 

  21. Takeda, M. et al. Nematic-to-smectic transition of magnetic texture in conical state. J. Phys. Soc. Jpn. 78, 093704 (2009)

    Article  ADS  Google Scholar 

  22. Münzer, W. et al. Skyrmion lattice in the doped semiconductor Fe1−x Co x Si. Phys Rev. B 81, 041203(R) (2010)

    Article  ADS  Google Scholar 

  23. Yi, S. D., Onoda, S., Nagaosa, N. & Han, J. H. Skyrmions and anomalous Hall effect in a Dzyaloshinskii-Moriya spiral magnet. Phys. Rev. B 80, 054416 (2009)

    Article  ADS  Google Scholar 

  24. Onose, Y., Takeshita, N., Terakura, C., Takagi, H. & Tokura, Y. Doping dependence of transport properties in Fe1-x Co x Si. Phys. Rev. B 72, 224431 (2006)

    Article  ADS  Google Scholar 

  25. Lee, M., Kang, W., Onose, Y., Tokura, Y. & Ong, N. P. Unusual Hall anomaly in MnSi under pressure. Phys. Rev. Lett. 102, 186601 (2009)

    Article  ADS  Google Scholar 

  26. Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009)

    Article  ADS  CAS  Google Scholar 

  27. Landau, L. D., Lifshitz, E. M. & Pitaevskii, L. P. Electrodynamics of Continuous Media Vol. 8, 178–179 (Elsevier, 2008)

    Google Scholar 

  28. Grundy, P. J. & Tebble, R. S. Lorentz electron microscopy. Adv. Phys. 17, 153–242 (1968)

    Article  ADS  CAS  Google Scholar 

  29. Tonomura, A. et al. Observation of individual vortices trapped along columnar defects in high-temperature superconductors. Nature 412, 620–622 (2001)

    Article  ADS  CAS  Google Scholar 

Download references


We would like to thank K. Ishizuka, K. Kimoto, T. Asaka, T. Hara and W. Z. Zhang for discussions. This work was partly supported by the Nanotechnology Network Project (no. ADE21005) and Grants-in-Aid for Scientific Research (numbers 16076205, 17105002, 19019004, 19048008, 19048015, 20046004, 20340086, 21244053 and 22014003) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and also by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program). J.H.H. is supported by grants from the Korea Research Foundation (KRF-2008-521-C00085 and KRF-2008-314-C00101).

Author information

Authors and Affiliations



Y.T. contributed to the planning of the study and the writing of the paper. X.Z.Y. and Y.M. performed the Lorentz TEM observations and wrote the experimental section of the paper. Y.O. and N.K. grew the sample crystal and contributed to the assignment of the Lorentz TEM images. J.H.P., J.H.H. and N.N. did the calculations and wrote a significant part of the discussion.

Corresponding authors

Correspondence to X. Z. Yu or Y. Tokura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Methods, Supplementary Data, References and Supplementary Figures 1-4 with legends. (PDF 1179 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yu, X., Onose, Y., Kanazawa, N. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing