Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A macroscopic mechanical resonator driven by mesoscopic electrical back-action

Abstract

Systems with coupled mechanical and optical or electrical degrees of freedom1,2 have fascinating dynamics that, through macroscopic manifestations of quantum behaviour3, provide new insights into the transition between the classical and quantum worlds. Of particular interest is the back-action of electrons and photons on mechanical oscillators, which can lead to cooling and amplification of mechanical motion4,5,6. Furthermore, feedback, which is naturally associated with back-action, has been predicted to have significant consequences for the noise of a detector coupled to a mechanical oscillator7,8. Recently it has also been demonstrated that such feedback effects lead to strong coupling between single-electron transport and mechanical motion in carbon nanotube nanomechanical resonators9,10. Here we present noise measurements which show that the mesoscopic back-action of electrons tunnelling through a radio-frequency quantum point contact11 causes driven vibrations of the host crystal. This effect is a remarkable macroscopic manifestation of microscopic quantum behaviour, where the motion of a mechanical oscillator—the host crystal, which consists of on the order of 1020 atoms—is determined by statistical fluctuations of tunnelling electrons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current measurement and mechanical back-action in a QPC.
Figure 2: Direct-current and radio-frequency characterization of the QPC.
Figure 3: Frequency-dependent shot noise.
Figure 4: A macroscopic mechanical resonance driven by mesoscopic shot noise.

Similar content being viewed by others

References

  1. Aspelmeyer, M. & Schwab, K. Focus on mechanical systems at the quantum limit. N. J. Phys. 10, 095001 (2008)

    Article  Google Scholar 

  2. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)

    Article  ADS  CAS  Google Scholar 

  3. Blencowe, M. P. Quantum electromechanical systems. Phys. Rep. 395, 159–222 (2004)

    Article  ADS  Google Scholar 

  4. Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006)

    Article  ADS  CAS  Google Scholar 

  5. Gröblacher, S. et al. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nature Phys. 5, 485–488 (2009)

    Article  ADS  Google Scholar 

  6. Kippenberg, T., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 33901 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Usmani, O., Blanter, Y. M. & Nazarov, Y. Strong feedback and current noise in nanoelectromechanical systems. Phys. Rev. B 75, 195312 (2007)

    Article  ADS  Google Scholar 

  8. Rodrigues, D. Fano-like antiresonances in nanomechanical and optomechanical systems. Phys. Rev. Lett. 102, 067202 (2009)

    Article  ADS  CAS  Google Scholar 

  9. Steele, G. A. et al. Strong coupling between single-electron tunneling and nanomechanical motion. Science 325, 1103–1107 (2009)

    Article  ADS  CAS  Google Scholar 

  10. Lassagne, B., Tarakanov, Y., Kinaret, J., Garcia-Sanchez, D. & Bachtold, A. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 325, 1107–1110 (2009)

    Article  ADS  CAS  Google Scholar 

  11. Reilly, D. J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Fast single-charge sensing with a rf quantum point contact. Appl. Phys. Lett. 91, 162101 (2007)

    Article  ADS  Google Scholar 

  12. Knobel, R. G. & Cleland, A. N. Nanometre-scale displacement sensing using a single electron transistor. Nature 424, 291–293 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Armour, A. D. Current noise of a single-electron transistor coupled to a nanomechanical resonator. Phys. Rev. B 70, 165315 (2004)

    Article  ADS  Google Scholar 

  14. Clerk, A. A. & Girvin, S. M. Shot noise of a tunnel junction displacement detector. Phys. Rev. B 70, 121303 (2004)

    Article  ADS  Google Scholar 

  15. Poggio, M. et al. An off-board quantum point contact as a sensitive detector of cantilever motion. Nature Phys. 4, 635–638 (2008)

    Article  CAS  Google Scholar 

  16. Braginsky, V. B. & Khalili, F. Quantum Measurement 76–92 (Cambridge Univ. Press, 1992)

    Book  Google Scholar 

  17. Cronenwett, S. M. et al. Low-temperature fate of the 0.7 structure in a point contact: a Kondo-like correlated state in an open system. Phys. Rev. Lett. 88, 226805 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Meir, Y., Hirose, K. & Wingreen, N. S. Kondo model for the “0.7 anomaly” in transport through a quantum point contact. Phys. Rev. Lett. 89, 196802 (2002)

    Article  ADS  Google Scholar 

  19. Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. & Prober, D. E. The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer. Science 280, 1238–1242 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Kogan, S. Electronic Noise and Fluctuations in Solids 145–155 (Cambridge Univ. Press, 1996)

    Book  Google Scholar 

  21. Blanter & Büttiker, M. Shot noise in mesoscopic conductors. Phys. Rep. 336, 1–166 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Reydellet, L.-H., Roche, P. & Glattli, D. C. Quantum partition noise of photon-created electron-hole pairs. Phys. Rev. Lett. 90, 176803 (2003)

    Article  ADS  Google Scholar 

  23. Lesovik, G. B. & Levitov, L. S. Noise in an ac biased junction: nonstationary Aharanov-Bohm effect. Phys. Rev. Lett. 72, 538–541 (1994)

    Article  ADS  CAS  Google Scholar 

  24. Schoelkopf, R. J., Kozhevnikov, A. A., Prober, D. E. & Rooks, M. J. Observation of “photon-assisted” shot noise in a phase-coherent conductor. Phys. Rev. Lett. 80, 2437–2440 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Korotkov, A. N. & Paalanen, M. A. Charge sensitivity of radio frequency single-electron transistor. Appl. Phys. Lett. 74, 4052–4054 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Ohno, I. Free vibration of a rectangular parallelepiped crystal and its application to determination of elastic constants of orthorhombic crystals. J. Phys. Earth 24, 355–379 (1976)

    Article  CAS  Google Scholar 

  27. Visscher, W. M., Migliori, A., Bell, T. M. & Reinert, R. A. On the normal-modes of free-vibration of inhomogeneous and anisotropic elastic objects. J. Acoust. Soc. Am. 90, 2154–2162 (1991)

    Article  ADS  Google Scholar 

  28. Soderkvist, J. Activation and detection of mechanical vibrations in piezoelectric beams. Sens. Actuators A Phys. 32, 567–571 (1992)

    Article  Google Scholar 

  29. Koch, J. & von Oppen, F. Franck-Condon blockade and giant Fano factors in transport through single molecules. Phys. Rev. Lett. 94, 206804 (2005)

    Article  ADS  Google Scholar 

  30. DiCarlo, L. et al. Shot-noise signatures of 0.7 structure and spin in a quantum point contact. Phys. Rev. Lett. 97, 036810 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. D. Armour, A. A. Clerk, J. G. E. Harris and D. A. Rodrigues for discussions. This work was supported by the NSF under grant nos DMR-0804488 and DMR-0804477, by the ARO under agreement nos W911NF-06-1-0312 and W911NF-06-1-0361, and by the NSA, LPS and ARO under agreement no. W911-NF-08-1-0482.

Author information

Authors and Affiliations

Authors

Contributions

A.J.R. initiated the project. M.T. fabricated and measured sample A. J.S. fabricated and measured five samples including samples B and C. F.P., M.B., J.Z. and W.X. fabricated and measured two additional samples. L.P. and K.W.W. grew the GaAs/AlGaAs heterostructure material. A.J.R. and M.P.B. developed the theoretical model used to describe the system. M.T. analysed data for sample A. A.J.R. and J.S. analysed data for all samples and co-wrote the paper with input from M.P.B.

Corresponding author

Correspondence to A. J. Rimberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Information comprising (1) Electromechanical coupling, (2) Vibrational Mode Analysis, (3) Photon Assisted Shot Noise calculation, (4) Displacement and backaction analysis, References and Supplementary Figure 1 with legend. (PDF 2551 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stettenheim, J., Thalakulam, M., Pan, F. et al. A macroscopic mechanical resonator driven by mesoscopic electrical back-action. Nature 466, 86–90 (2010). https://doi.org/10.1038/nature09123

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09123

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing