Nearby galaxies as pointers to a better theory of cosmic evolution

Abstract

The great advances in the network of cosmological tests show that the relativistic Big Bang theory is a good description of our expanding Universe. However, the properties of nearby galaxies that can be observed in greatest detail suggest that a better theory would describe a mechanism by which matter is more rapidly gathered into galaxies and groups of galaxies. This more rapid growth occurs in some theoretical ideas now under discussion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Galaxies at radial distances 1 <  D  < 8 Mpc from the centre of the Local Group of galaxies.
Figure 2: A galaxy typical of those found in low-density regions.
Figure 3: Ongoing rearrangement of matter in the central luminous regions of galaxies.
Figure 4: Measures of early-type galaxies in more and less crowded environments.

References

  1. 1

    Peebles, P. J. E., Page, L. A. & Partridge, R. B. Finding the Big Bang (Cambridge Univ. Press, 2009)Section 5.4 of this book reviews the network of cosmological tests; the earlier chapters describe the origins of principal tests.

  2. 2

    Bond, J. R., Kofman, L. & Pogosyan, D. How filaments of galaxies are woven into the cosmic web. Nature 380, 603–606 (1996)

  3. 3

    Mathis, H. & White, S. D. M. Voids in the simulated local Universe. Mon. Not. R. Astron. Soc. 337, 1193–1206 (2002)

  4. 4

    Peebles, P. J. E. Galaxies as a cosmological test. Nuovo Cimento B 122, 1035–1042 (2007)

  5. 5

    Tikhonov, A. V. & Klypin, A. The emptiness of voids: yet another overabundance problem for the Λ cold dark matter model. Mon. Not. R. Astron. Soc. 395, 1915–1924 (2009)

  6. 6

    Stanonik, K. et al. Polar disk galaxy found in wall between voids. Astrophys. J. 696, L6–L9 (2009)

  7. 7

    Gottlöber, S., Łokas, E. L., Klypin, A. & Hoffman, Y. The structure of voids. Mon. Not. R. Astron. Soc. 344, 715–724 (2003)

  8. 8

    Zwaan, M., Meyer, M. & Staveley-Smith, L. The velocity function of gas-rich galaxies. Mon. Not. R. Astron. Soc. 403, 1969–1977 (2010)

  9. 9

    Vale, A. & Ostriker, J. P. The non-parametric model for linking galaxy luminosity with halo/subhalo mass. Mon. Not. R. Astron. Soc. 371, 1173–1187 (2006)

  10. 10

    Kravtsov, A. V. Dark matter substructure and dwarf galactic satellites. Adv. Astron. 2010, 1–22 (2010)

  11. 11

    Tinker, J. L. & Conroy, C. The void phenomenon explained. Astrophys. J. 691, 633–639 (2009)

  12. 12

    van den Bergh, S. The outer fringes of the Local Group. Astron. J. 107, 1328–1332 (1994)

  13. 13

    Grcevich, J. & Putman, M. E. H I in Local Group dwarf galaxies and stripping by the galactic halo. Astrophys. J. 696, 385–395 (2009)

  14. 14

    Boomsma, R., Oosterloo, T. A., Fraternali, F., van der Hulst, J. M. & Sancisi, R. HI holes and high-velocity clouds in the spiral galaxy NGC 6946. Astron. Astrophys. 490, 555–570 (2008)

  15. 15

    Sheth, R. K. & van de Weygaert, R. A hierarchy of voids: much ado about nothing. Mon. Not. R. Astron. Soc. 350, 517–538 (2004)

  16. 16

    Kormendy, J. & Fisher, D. B. in Formation and Evolution of Galaxy Disks (eds Funes, J. G. & Corsini, E. M.) 297–308 (Astronomical Society of the Pacific, 2008)This paper provides a succinct explanation of the pure disk phenomenon.

  17. 17

    Kormendy, J. & Kennicutt, R. C. Jr. Secular evolution and the formation of pseudobulges in disk galaxies. Annu. Rev. Astron. Astrophys. 42, 603–683 (2004)

  18. 18

    Falcón-Barroso, J. et al. The SAURON project - VII. Integral-field absorption and emission-line kinematics of 24 spiral galaxy bulges. Mon. Not. R. Astron. Soc. 369, 529–566 (2006)

  19. 19

    Steinmetz, M. & Navarro, J. F. The hierarchical origin of galaxy morphologies. N. Astron. 7, 155–160 (2002)

  20. 20

    Parry, O. H., Eke, V. R. & Frenk, C. S. Galaxy morphology in the ΛCDM cosmology. Mon. Not. R. Astron. Soc. 396, 1972–1984 (2009)

  21. 21

    Nagamine, K., Ostriker, J. P., Fukugita, M. & Cen, R. The history of cosmological star formation: three independent approaches and a critical test using the extragalactic background light. Astrophys. J. 653, 881–893 (2006)

  22. 22

    Hopkins, P. F., Cox, T. J., Younger, J. D. & Hernquist, L. How do disks survive mergers? Astrophys. J. 691, 1168–1201 (2009)

  23. 23

    Governato, F. et al. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows. Nature 463, 203–206 (2010)This paper describes state-of-the-art simulations of the formation of spiral galaxies.

  24. 24

    Scannapieco, C., White, S. D. M., Springel, V. & Tissera, P. B. The formation and survival of discs in a ΛCDM universe. Mon. Not. R. Astron. Soc. 396, 696–708 (2009)

  25. 25

    Scannapieco, C., Gadotti, D. A., Jonsson, P. & White, S. D. M. An observer’s view of simulated galaxies: disc-to-total ratios, bars, and (pseudo-)bulges. Mon. Not. R. Astron. Soc. (submitted); preprint at 〈http://arxiv.org/abs/1001.4890〉 (2010)

  26. 26

    Wyse, R. F. G. The star-formation history of the Milky Way galaxy. Proc. IAU 4 (S258) 11–22 (2008)

  27. 27

    Bernardi, M., Nichol, R. C., Sheth, R. K., Miller, C. J. & Brinkmann, J. Evolution and environment of early-type galaxies. Astron. J. 131, 1288–1317 (2006)This paper presents an example of the insensitivity of gross properties of galaxies to environment.

  28. 28

    Faber, S. M. & Jackson, R. E. Velocity dispersions and mass-to-light ratios for elliptical galaxies. Astrophys. J. 204, 668–683 (1976)

  29. 29

    Tully, R. B. & Fisher, J. R. A new method of determining distances to galaxies. Astron. Astrophys. 54, 661–673 (1977)

  30. 30

    Visvanathan, N. & Sandage, A. The color-absolute magnitude relation for E and S0 galaxies. I. Calibration and tests for universality using Virgo and eight other nearby clusters. Astrophys. J. 216, 214–226 (1977)

  31. 31

    Kormendy, J. Brightness distributions in compact and normal galaxies. II. Structure parameters of the spheroidal component. Astrophys. J. 218, 333–346 (1977)

  32. 32

    Szomoru, A., van Gorkom, J. H., Gregg, M. D. & Strauss, M. A. An HI survey of the Boötes void. II. The analysis. Astron. J. 111, 2150–2166 (1996)

  33. 33

    Sage, L. J., Weistrop, D., Cruzen, S. & Kompe, C. Molecular gas and star formation within galaxies in the Boötes void. Astron. J. 114, 1753–1757 (1997)

  34. 34

    Hogg, D. W. et al. The dependence on environment of the color-magnitude relation of galaxies. Astrophys. J. 601, L29–L32 (2004)This paper presents another example of the insensitivity of gross properties of galaxies to environment.

  35. 35

    Park, C., Choi, Y.-Y., Vogeley, M. S., Gott, J. R. I. & Blanton, M. R. Environmental dependence of properties of galaxies in the Sloan Digital Sky Survey. Astrophys. J. 658, 898–916 (2007)

  36. 36

    Nair, P. B., van den Bergh, S. & Abraham, R. G. The environmental dependence of the luminosity-size relation for galaxies. Astrophys. J. 715, 606–622 (2010)

  37. 37

    Disney, M. J. et al. Galaxies appear simpler than expected. Nature 455, 1082–1084 (2008)

  38. 38

    Blanton, M. R. & Moustakas, J. Physical properties and environments of nearby galaxies. Annu. Rev. Astron. Astrophys. 47, 159–210 (2009)

  39. 39

    Tremaine, S. D. & Richstone, D. O. A test of a statistical model for the luminosities of bright cluster galaxies. Astrophys. J. 212, 311–316 (1977)

  40. 40

    Lin, Y.-T., Ostriker, J. P. & Miller, C. J. A new test of the statistical nature of the brightest cluster galaxies. Astrophys. J. (submitted); preprint at 〈http://arxiv.org/abs/0904.3098〉 (2009)

  41. 41

    Ostriker, J. P. & Tremaine, S. D. Another evolutionary correction to the luminosity of giant galaxies. Astrophys. J. 202, L113–L117 (1975)

  42. 42

    Toomre, A. in The Evolution of Galaxies and Stellar Populations (eds Tinsley, B. M. & Larson, R. B.) 401–426 (Yale Univ. Observatory, 1977)

  43. 43

    Schweizer, F. Colliding and merging galaxies. I. Evidence for the recent merging of two disk galaxies in NGC 7252. Astrophys. J. 252, 455–460 (1982)

  44. 44

    Naab, T. & Ostriker, J. P. Are disk galaxies the progenitors of giant ellipticals? Astrophys. J. 690, 1452–1462 (2009)

  45. 45

    Postman, M. & Geller, M. J. The morphology-density relation: the group connection. Astrophys. J. 281, 95–99 (1984)

  46. 46

    Tal, T., van Dokkum, P. G., Nelan, J. & Bezanson, R. The frequency of tidal features associated with nearby luminous elliptical galaxies from a statistically complete sample. Astron. J. 138, 1417–1427 (2009)

  47. 47

    Gao, L., Loeb, A., Peebles, P. J. E., White, S. D. M. & Jenkins, A. Early formation and late merging of the giant galaxies. Astrophys. J. 614, 17–25 (2004)

  48. 48

    Bezanson, R. et al. The relation between compact, quiescent high-redshift galaxies and massive nearby elliptical galaxies: evidence for hierarchical, inside-out growth. Astrophys. J. 697, 1290–1298 (2009)

  49. 49

    Förster Schreiber, N. M. et al. The SINS Survey: SINFONI integral field spectroscopy of z 2 star-forming galaxies. Astrophys. J. 706, 1364–1428 (2009)

  50. 50

    Wong, O. I. et al. The Northern HIPASS catalogue – data presentation, completeness and reliability measures. Mon. Not. R. Astron. Soc. 371, 1855–1864 (2006)

  51. 51

    Martin, A. M. et al. The Arecibo Legacy Fast ALFA Survey. VIII. H I source catalog of the anti-Virgo region at δ = +25°. Astrophys. J. Suppl. Ser. 183, 214–224 (2009)

  52. 52

    Dvali, G., Gabadadze, G. & Porrati, M. 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B 485, 208–214 (2000)

  53. 53

    Brax, P., van de Bruck, C., Davis, A.-C., Khoury, J. & Weltman, A. Detecting dark energy in orbit: the cosmological chameleon. Phys. Rev. D 70, 123518 (2004)

  54. 54

    Silvestri, A. & Trodden, M. Approaches to understanding cosmic acceleration. Rep. Prog. Phys. 72, 096901 (2009)

  55. 55

    Farrar, G. R. & Peebles, P. J. E. Interacting dark matter and dark energy. Astrophys. J. 604, 1–11 (2004)

  56. 56

    Nusser, A., Gubser, S. S. & Peebles, P. J. Structure formation with a long-range scalar dark matter interaction. Phys. Rev. D 71, 083505 (2005)

  57. 57

    Zhang, P., Liguori, M., Bean, R. & Dodelson, S. Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity. Phys. Rev. Lett. 99, 141302 (2007)

  58. 58

    Hui, L., Nicolis, A. & Stubbs, C. W. Equivalence principle implications of modified gravity models. Phys. Rev. D 80, 104002 (2009)

  59. 59

    Keselman, J. A., Nusser, A. & Peebles, P. J. E. Galaxy satellites and the weak equivalence principle. Phys. Rev. D 80, 063517 (2009)

  60. 60

    Hellwing, W. A. & Juszkiewicz, R. Dark matter gravitational clustering with a long-range scalar interaction. Phys. Rev. D 80, 083522 (2009)

  61. 61

    Martino, M. C. & Sheth, R. K. Density profiles and voids in modified gravity models. Preprint at 〈http://arxiv.org/abs/0911.1829〉 (2009)

  62. 62

    Keselman, J. A., Nusser, A. & Peebles, P. J. E. Cosmology with equivalence principle breaking in the dark sector galaxy. Phys. Rev. D 81, 063521 (2010)

  63. 63

    de Vaucouleurs, G. Evidence for a local supergalaxy. Astron. J. 58, 30–32 (1953)

  64. 64

    Karachentsev, I. D., Karachentseva, V. E., Huchtmeier, W. K. & Makarov, D. I. A catalog of neighboring galaxies. Astron. J. 127, 2031–2068 (2004)

  65. 65

    Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 182, 543–558 (2009)

  66. 66

    Springel, V. et al. The Aquarius Project: the subhaloes of galactic haloes. Mon. Not. R. Astron. Soc. 391, 1685–1711 (2008)

Download references

Acknowledgements

We are grateful to the Virgo Consortium for their cosmological simulations and to J. Wang, who produced Fig. 3 from these simulations. We have benefited from advice from F. Governato, A. Klypin, J. Kormendy, J. Silk, S. van den Bergh, J. van Gorkom, S. White and R. Wyse. This work was supported in part by The Israel Science Foundation (grant no. 303/09).

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. J. E. Peebles.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peebles, P., Nusser, A. Nearby galaxies as pointers to a better theory of cosmic evolution. Nature 465, 565–569 (2010). https://doi.org/10.1038/nature09101

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.