Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The recent formation of Saturn's moonlets from viscous spreading of the main rings


The regular satellites of the giant planets are believed to have finished their accretion concurrent with the planets, about 4.5 Gyr ago1,2,3,4. A population of Saturn’s small moons orbiting just outside the main rings are dynamically young5,6 (less than 107 yr old), which is inconsistent with the formation timescale for the regular satellites. They are also underdense7 (600 kg m−3) and show spectral characteristics similar to those of the main rings8,9. It has been suggested that they accreted at the rings’ edge7,10,11, but hitherto it has been impossible to model the formation process fully owing to a lack of computational power. Here we report a hybrid simulation in which the viscous spreading of Saturn’s rings beyond the Roche limit (the distance beyond which the rings are gravitationally unstable) gives rise to the small moons. The moonlets’ mass distribution and orbital architecture are reproduced. The current confinement of the main rings and the existence of the dusty F ring are shown to be direct consequences of the coupling of viscous evolution and satellite formation. Saturn’s rings, like a mini protoplanetary disk, may be the last place where accretion was recently active in the Solar System, some 106–107 yr ago.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mass of Saturn’s inner moons versus distance.
Figure 2: Time evolution of our model with σ0 = 400 kg m−2.
Figure 3: Comparing the mass distribution of the moonlets obtained in our simulation with observations.


  1. Mosqueira, I. & Estrada, P. R. Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites. Icarus 163, 198–231 (2003)

    ADS  CAS  Article  Google Scholar 

  2. Canup, R. & Ward, W. R. Formation of the Galilean satellites: conditions for accretion. Astron. J. 124, 3404–3423 (2002)

    ADS  Article  Google Scholar 

  3. Canup, R. M. & Ward, W. R. A common mass scaling for satellite systems of gaseous planets. Nature 411, 834–839 (2006)

    ADS  Article  Google Scholar 

  4. Estrada, P. R., Mosqueira, I., Lissauer, J. J., D’Angelo, G. & Cruikshank, D. P. in Europa (eds McKinnon, W., Pappalardo, R. & Khurana, K.) 27–58 (Univ. Arizona Press, 2009)

    Google Scholar 

  5. Lissauer, J. J. & Cuzzi, J. N. Resonances in Saturn’s rings. Astron. J. 87, 1051–1058 (1982)

    ADS  Article  Google Scholar 

  6. Poulet, F. & Sicardy, B. Dynamical evolution of the Prometheus-Pandora system. Mon. Not. R. Astron. Soc. 322, 343–355 (2001)

    ADS  Article  Google Scholar 

  7. Porco, C. C., Thomas, P. C., Weiss, J. W. & Richardson, D. C. Physical characteristics of Saturn’s small satellites provide clues to their origins. Science 318, 1602–1607 (2007)

    ADS  CAS  Article  PubMed Central  Google Scholar 

  8. Poulet, F., Cruikshank, D. P., Cuzzi, J. N., Roush, T. L. & French, R. G. Compositions of Saturn’s rings A, B, and C from high resolution near-infrared spectroscopic observations. Astron. Astrophys. 412, 305–316 (2003)

    ADS  CAS  Article  Google Scholar 

  9. Coradini, A. et al. Saturn satellites as seen by Cassini mission. Earth Moon Planets 105, 289–310 (2009)

    ADS  CAS  Article  Google Scholar 

  10. Karjalainen, R. & Salo, H. Gravitational accretion of particles in Saturn’s rings. Icarus 172, 328–348 (2004)

    ADS  Article  Google Scholar 

  11. Charnoz, S., Brahic, A., Thomas, P. & Porco, C. The equatorial ridges of Pan and Atlas: late accretionary ornaments? Science 318, 1622–1624 (2007)

    ADS  CAS  Article  PubMed Central  Google Scholar 

  12. Karjalainen, R. Aggregate impacts in Saturn’s rings. Icarus 189, 523–537 (2007)

    ADS  Article  Google Scholar 

  13. Ohtsuki, K. Capture probability of colliding planetesimals: dynamical constraints on accretion of planets, satellites, and ring particles. Icarus 106, 228–246 (1993)

    ADS  Article  Google Scholar 

  14. Canup, R. M. & Esposito, L. W. Accretion in the Roche zone: coexistence of rings and ring moons. Icarus 113, 331–352 (1995)

    ADS  Article  Google Scholar 

  15. Weidenschilling, S. J., Chapman, C. R., Davis, D. R. & Greenberg, R. in Planetary Rings (eds Greenberg, R. & Brahic, A.) 367–415 (Univ. Arizona Press (1984)

    Google Scholar 

  16. Spitale, J. N. & Porco, C. C. Time variability in the outer edge of Saturn’s A-ring revealed by Cassini imaging. Astron. J. 138, 1520–1528 (2009)

    ADS  Article  Google Scholar 

  17. Salmon, J., Charnoz, S. & Crida, A. Long-term and large scale simulation of Saturn’s rings viscous evolution. Icarus (in the press)

  18. Takeuchi, T., Miyama, S. M. & Lin, D. N. C. Gap formation in protoplanetary disks. Astrophys. J. 460, 832–847 (1996)

    ADS  Article  Google Scholar 

  19. Daisaka, H., Tanaka, H. & Ida, S. Viscosity in a dense planetary ring with self-gravitating particles. Icarus 154, 296–312 (2001)

    ADS  Article  Google Scholar 

  20. Meyer-Vernet, N. & Sicardy, B. On the physics of resonant disk-satellite interaction. Icarus 69, 157–175 (1987)

    ADS  Article  Google Scholar 

  21. Kokubo, E., Ida, S. & Makino, J. Evolution of a circumterrestrial disk and formation of a single moon. Icarus 148, 419–436 (2000)

    ADS  Article  Google Scholar 

  22. Charnoz, S., Morbidelli, A., Dones, J. & Salmon, A. Did Saturn’s rings form during the Late Heavy Bombardment? Icarus 199, 413–428 (2009)

    ADS  Article  Google Scholar 

  23. Cuzzi, J. et al. in Saturn from Cassini-Huygens (eds Dougherty, M. K., Esposito, L. W. & Krimigis, T.) 535–573 (Springer, 2009)

    Google Scholar 

  24. Charnoz, S., Dones, L., Esposito, L. W., Estrada, P. R. & Hedman, M. M. in Saturn from Cassini-Huygens (eds Dougherty, M. K., Esposito, L. W. & Krimigis, T.) 459–509 (Springer, 2009)

    Google Scholar 

  25. Murray, C. D. et al. The determination of the structure of Saturn’s F ring by nearby moonlets. Nature 453, 739–744 (2008)

    ADS  CAS  Article  PubMed Central  Google Scholar 

  26. Showalter, M. R., Pollack, J. B., Ockert, M. B., Doyle, L. R. & Dalton, J. B. A photometric study of Saturn’s F ring. Icarus 100, 394–411 (1992)

    ADS  Article  Google Scholar 

  27. Charnoz, S. Physical collisions of moonlets and clumps with the Saturn’s F ring core. Icarus 201, 191–197 (2009)

    ADS  Article  Google Scholar 

Download references


This work was funded by Université Paris Diderot and CEA/IRFU/SAp. The authors thank F. Bournaud, J. Burns, L. Dones, Z. Leinhardt and H. Throop.

Author information

Authors and Affiliations



S.C. and J.S. designed the code and analysed the results, and A.C. was involved in the analysis of the results and provided critical contributions.

Corresponding author

Correspondence to Sébastien Charnoz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Information and Data, Supplementary Figure SI4 with legend and References. (PDF 171 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Charnoz, S., Salmon, J. & Crida, A. The recent formation of Saturn's moonlets from viscous spreading of the main rings. Nature 465, 752–754 (2010).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing