Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electromagnetically induced transparency with single atoms in a cavity

Subjects

Abstract

Optical nonlinearities offer unique possibilities for the control of light with light. A prominent example is electromagnetically induced transparency (EIT), where the transmission of a probe beam through an optically dense medium is manipulated by means of a control beam1,2,3. Scaling such experiments into the quantum domain with one (or just a few) particles of light and matter will allow for the implementation of quantum computing protocols with atoms and photons4,5,6,7, or the realization of strongly interacting photon gases exhibiting quantum phase transitions of light8,9. Reaching these aims is challenging and requires an enhanced matter–light interaction, as provided by cavity quantum electrodynamics10,11,12. Here we demonstrate EIT with a single atom quasi-permanently trapped inside a high-finesse optical cavity. The atom acts as a quantum-optical transistor with the ability to coherently control13 the transmission of light through the cavity. We investigate the scaling of EIT when the atom number is increased one-by-one. The measured spectra are in excellent agreement with a theoretical model. Merging EIT with cavity quantum electrodynamics and single quanta of matter is likely to become the cornerstone for novel applications, such as dynamic control of the photon statistics of propagating light fields14 or the engineering of Fock state superpositions of flying light pulses15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental protocol and cavity EIT.
Figure 2: Cavity EIT with a single atom.
Figure 3: Cavity EIT spectra for N = 2 to 5 atoms.
Figure 4: Measured transparency, contrast and linewidth of cavity EIT with N = 1 to 7 atoms.

Similar content being viewed by others

References

  1. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)

    Article  CAS  Google Scholar 

  2. Lukin, M. D. Colloquium: trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457–472 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Fleischhauer, M., Imamoğlu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Werner, M. J. & Imamoğlu, A. Photon-photon interactions in cavity electromagnetically induced transparency. Phys. Rev. A 61, 011801 (1999)

    Article  ADS  Google Scholar 

  5. Rebic, S., Tan, S. M., Parkins, A. S. & Walls, D. F. Large Kerr nonlinearity with a single atom. J. Opt. B 1, 490–495 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Bermel, P., Rodriguez, A., Johnson, S. G., Joannopoulos, J. D. & Soljačić, M. Single-photon all-optical switching using waveguide-cavity quantum electrodynamics. Phys. Rev. A 74, 043818 (2006)

    Article  ADS  Google Scholar 

  7. Cardimona, D. A., Alsing, P. M., Mozer, H. & Rhodes, C. Interference effects in a three-level atom in a cavity beyond the weak-field approximation. Phys. Rev. A 79, 063817 (2009)

    Article  ADS  Google Scholar 

  8. Hartmann, M. J., Brandao, F. G. S. L. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nature Phys. 2, 849–855 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase transitions of light. Nature Phys. 2, 856–861 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Imamoğlu, A., Schmidt, H., Woods, G. & Deutsch, M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997)

    Article  ADS  Google Scholar 

  11. Grangier, P., Walls, D. F. & Gheri, K. M. Comment on “Strongly interacting photons in a nonlinear cavity”. Phys. Rev. Lett. 81, 2833–2833 (1998)

    Article  ADS  CAS  Google Scholar 

  12. Imamoğlu, A., Schmidt, H., Woods, G. & Deutsch, M. Erratum: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 81, 2836–2836 (1998)

    Article  ADS  Google Scholar 

  13. Xu, X. et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nature Phys. 4, 692–695 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Rebić, S., Parkins, A. S. & Tan, S. M. Photon statistics of a single-atom intracavity system involving electromagnetically induced transparency. Phys. Rev. A 65, 063804 (2002)

    Article  ADS  Google Scholar 

  15. Nikoghosyan, G. & Fleischhauer, M. Photon-number selective group delay in cavity induced transparency. Preprint at 〈http://arXiv.org/abs/0910.1900〉 (2009)

  16. Santori, C. et al. Coherent population trapping of single spins in diamond under optical excitation. Phys. Rev. Lett. 97, 247401 (2006)

    Article  ADS  Google Scholar 

  17. Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Hwang, J. et al. A single-molecule optical transistor. Nature 460, 76–80 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Nußmann, S. et al. Submicron positioning of single atoms in a microcavity. Phys. Rev. Lett. 95, 173602 (2005)

    Article  ADS  Google Scholar 

  20. Khudaverdyan, M. et al. Quantum jumps and spin dynamics of interacting atoms in a strongly coupled atom-cavity system. Phys. Rev. Lett. 103, 123006 (2009)

    Article  ADS  CAS  Google Scholar 

  21. Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002)

    Article  ADS  Google Scholar 

  22. McKeever, J. et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-atom single-photon quantum interface. Science 317, 488–490 (2007)

    Article  ADS  CAS  Google Scholar 

  25. Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Lukin, M. D., Fleischhauer, M., Scully, M. O. & Velichansky, V. L. Intracavity electromagnetically induced transparency. Opt. Lett. 23, 295–297 (1998)

    Article  ADS  CAS  Google Scholar 

  28. Hernandez, G., Zhang, J. & Zhu, Y. Vacuum Rabi splitting and intracavity dark state in a cavity-atom system. Phys. Rev. A 76, 053814 (2007)

    Article  ADS  Google Scholar 

  29. Wu, H., Gea-Banacloche, J. & Xiao, M. Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium. Phys. Rev. Lett. 100, 173602 (2008)

    Article  ADS  Google Scholar 

  30. Figueroa, E., Vewinger, F., Appel, J. & Lvovsky, A. I. Decoherence of electromagnetically induced transparency in atomic vapor. Opt. Lett. 31, 2625–2627 (2006)

    Article  ADS  CAS  Google Scholar 

  31. Schuster, I. et al. Nonlinear spectroscopy of photons bound to one atom. Nature Phys. 4, 382–385 (2008)

    Article  ADS  CAS  Google Scholar 

  32. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005)

    Article  ADS  CAS  Google Scholar 

  33. Kampschulte, T. et al. Optical control of the refractive index of a single atom. Preprint at 〈http://arxiv.org/abs/1004.5348〉 (2010)

Download references

Acknowledgements

We thank D. L. Moehring, H. P. Specht, C. Nölleke, A. Neuzner and C. Guhl for their contributions during the early stages of the experiment. This work was supported by the Deutsche Forschungsgemeinschaft (Research Unit 635) and the European Union (IST programmes SCALA and AQUTE). E.F. acknowledges support from the Alexander von Humboldt Foundation. C.J.V.-B. acknowledges support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior and the Brazilian National Institute for Science and Technology of Quantum Information (INCT-IQ).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the implementation and modelling of the experiment, the interpretation of the results and the writing of the manuscript.

Corresponding author

Correspondence to Eden Figueroa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mücke, M., Figueroa, E., Bochmann, J. et al. Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755–758 (2010). https://doi.org/10.1038/nature09093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09093

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing