Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The lead isotopic age of the Earth can be explained by core formation alone



The meaning of the age of the Earth defined by lead isotopes has long been unclear. Recently it has been proposed1 that the age of the Earth deduced from lead isotopes reflects volatile loss to space at the time of the Moon-forming giant impact rather than partitioning into metallic liquids during protracted core formation. Here we show that lead partitioning into liquid iron depends strongly on carbon content and that, given a content of 0.2% carbon2,3, experimental and isotopic data both provide evidence of strong partitioning of lead into the core throughout the Earth’s accretion. Earlier conclusions that lead is weakly partitioned into iron arose from the use of carbon-saturated (about 5% C) iron alloys. The lead isotopic age of the Earth is therefore consistent with partitioning into the core and with no significant late losses of moderately volatile elements to space during the giant impact.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Volatile element abundances in the BSE.
Figure 2: Experimental data for Pb partitioning into liquid Fe coexisting with liquid silicate.
Figure 3: Calculated and estimated lead isotopic composition of the BSE.
Figure 4: Rb–Sr model age of the Moon plotted versus the percentage loss of Rb from the Earth at the time of the giant impact.


  1. Lagos, M. et al. The Earth’s missing lead may not be in the core. Nature 456, 89–92 (2008)

    Article  ADS  CAS  Google Scholar 

  2. Dasgupta, R. & Walker, D. Carbon solubility in core melts in a shallow magma ocean environment and distribution of carbon between the Earth’s core and the mantle. Geochim. Cosmochim. Acta 72, 4627–4641 (2008)

    Article  ADS  CAS  Google Scholar 

  3. McDonough, W. F. in The Mantle and Core (ed. Carlson, R. W.) Vol. 2, 547–568 (Elsevier-Pergamon, Oxford, 2003)

    Google Scholar 

  4. Allègre, C. J., Manhes, G. & Gopel, C. The age of the Earth. Geochim. Cosmochim. Acta 59, 1445–1456 (1995)

    Article  ADS  Google Scholar 

  5. Pepin, R. O. & Porcelli, D. R. Xenon isotope systematics, giant impacts, and mantle degassing on the early Earth. Earth Planet. Sci. Lett. 250, 470–485 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Pepin, R. O. Evolution of Earth’s noble gases: consequences of assuming hydrodynamic loss driven by giant impact. Icarus 126, 148–156 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Galer, S. J. G. & Goldstein, S. L. in Isotopic Studies of Crust-mantle Evolution (eds Basu, A. R. & Hart, S. R.) 75–98 (American Geophysical Union, 1996)

    Google Scholar 

  8. Touboul, M., Kleine, T., Bourdon, B., Palme, H. & Wieler, R. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450, 1206–1209 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Halliday, A. N. A young Moon-forming giant impact at 70 to 110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Phil. Trans. R. Soc. Lond. A 366, 4163–4181 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Norman, M. D., Borg, L. E., Nyquist, L. E. & Bogard, D. D. Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust. Meteorit. Planet. Sci. 38, 645–661 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Wasserburg, G. J., Papanastassiou, D. A., Tera, F. & Huneke, J. C. Outline of a lunar chronology. Phil. Trans. R. Soc. Lond., A 285, 7–22 (1977)

    Article  ADS  CAS  Google Scholar 

  12. Malavergne, V. et al. New high-pressure and high-temperature metal/silicate partitioning of U and Pb: implications for the cores of the Earth and Mars. Geochim. Cosmochim. Acta 71, 2637–2655 (2007)

    Article  ADS  CAS  Google Scholar 

  13. Allègre, C. J., Poirier, J.-P., Humler, E. & Hofmann, A. W. The chemical composition of the Earth. Earth Planet. Sci. Lett. 134, 515–526 (1995)

    Article  ADS  Google Scholar 

  14. The Japan Society for the Promotion of Science and The 19th Committee on Steelmaking Steelmaking Data Sourcebook Part II, 273–312 (Gordon and Breach, 1988)

    Google Scholar 

  15. Malhotra, S., Chang, L. & Schlesinger, M. E. Liquid solution thermodynamics in the alumina-saturated Fe-C-Pb system. ISIJ Int. 38, 1–8 (1998)

    Article  CAS  Google Scholar 

  16. Wood, B. J., Nielsen, S. G., Rehkämper, M. & Halliday, A. N. The effects of core formation on the Pb- and Tl-isotopic composition of the silicate Earth. Earth Planet. Sci. Lett. 269, 326–336 (2008)

    Article  ADS  Google Scholar 

  17. Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005)

    Article  ADS  CAS  Google Scholar 

  18. Wood, B. J., Wade, J. & Kilburn, M. R. Core formation and the oxidation state of the Earth: additional constraints from Nb, V and Cr partitioning. Geochim. Cosmochim. Acta 72, 1415–1426 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Chabot, N. L., Saslow, S. A., McDonough, W. F. & Jones, J. H. An investigation of the behavior of Cu and Cr during iron meteorite crystallisation. Meteorit. Planet. Sci. 44, 505–520 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Dreibus, G. & Palme, H. Cosmochemical constraints on the sulfur content in the Earth’s core. Geochim. Cosmochim. Acta 60, 1125–1130 (1996)

    Article  ADS  CAS  Google Scholar 

  21. Halliday, A. N. Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nature 427, 505–509 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Yin, Q. Z. et al. A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418, 949–952 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Wiechert, U. et al. Oxygen isotopes and the Moon-forming giant impact. Science 294, 345–348 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Georg, R. B., Halliday, A. N., Schauble, E. & Reynolds, B. C. Silicon in the Earth's core. Nature 447, 1102–1106 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Pahlevan, K. & Stevenson, D. J. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262, 438–449 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Kleine, T. et al. Hf-W chronometry and the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta (in the press)

  28. Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003)

    Article  ADS  CAS  Google Scholar 

  29. McDonough, W. F. et al. Potassium, rubidium and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochim. Cosmochim. Acta 53, 1001–1012 (1992)

    Article  ADS  Google Scholar 

  30. Zahnle, K. et al. Emergence of a habitable planet. Space Sci. Rev. 129, 35–78 (2007)

    Article  ADS  CAS  Google Scholar 

  31. Palme, H. & O'Neill, H. S. C. in The Mantle and Core (ed. Carlson, R. W.) Vol. 2, 1–38 (Elsevier, Amsterdam, 2003)

    Google Scholar 

  32. Barin, I., Sauert, F., Schultze-Rhonhof, E. & Sheng, W. S. Thermochemical Data of Pure Substances Parts I and II (CH Verlagsgesellschaft, 1989)

    Google Scholar 

  33. Nyquist, L. E., Shih, C. Y., Wiesmann, H. & Mikouchi, T. Fossil 26Al and 53Mn in d’Orbigny and Sahara 99555 and the timescale for angrite magmatism. Lunar Planet. Sci. Conf. XXXIV, 1388 (2004)

    ADS  Google Scholar 

  34. Norman, M. D., Pearson, N. J., Sharma, A. & Griffin, W. L. Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses. Geostand. Newsl. 20, 247–261 (1996)

    Article  CAS  Google Scholar 

  35. Van Achterbergh, E., Ryan, C. G., Jackson, S. E. & Griffin, W. L. in Laser Ablation ICPMS in the Earth Sciences (ed. Sylvester, P.) Vol. 29, 239–243 (Mineralogical Association of Canada, 2001)

    Google Scholar 

Download references


The assistance of N. Pearson (Macquarie), N. Charnley (Oxford) and J. Day (Cambridge) with microprobe and laser ICP-MS analysis is acknowledged with thanks. B.J.W. acknowledges the support of the Australian Research Council through Federation Fellowship FF 0456999 and the NERC (UK) through grant NE/F018266/1. A.N.H. acknowledges support from STFC. Experiments at the Bayerisches Geoinstitut were performed under the EU ‘Research Infrastructures: Transnational Access’ Programme (contract number 505320; RITA—High Pressure).

Author information

Authors and Affiliations



B.J.W. performed all the experiments and all the electron microprobe and laser ICP-MS analyses, and the Pb-isotopic modelling of Fig. 3. A.N.H. performed the Sr-isotope modelling depicted in Fig. 4. Both authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Bernard J. Wood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2, Supplementary Data and Supplementary Figure S1 with legend. (PDF 623 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wood, B., Halliday, A. The lead isotopic age of the Earth can be explained by core formation alone. Nature 465, 767–770 (2010).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing