Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Distinguishing the ultrafast dynamics of spin and orbital moments in solids


For an isolated quantum particle, such as an electron, the orbital (L) and spin (S) magnetic moments can change provided that the total angular momentum of the particle is conserved. In condensed matter, an efficient transfer between L and S can occur owing to the spin–orbit interaction, which originates in the relativistic motion of electrons1. Disentangling the absolute contributions of the orbital and spin angular momenta is challenging, however, as any transfer between the two occurs on femtosecond timescales. Here we investigate such phenomena by using ultrashort optical laser pulses to change the magnetization of a ferromagnetic film2,3,4,5,6,7 and then probe its dynamics with circularly polarized femtosecond X-ray pulses8. Our measurements enable us to disentangle the spin and orbital components of the magnetic moment, revealing different dynamics for L and S. We highlight the important role played by the spin–orbit interaction in the ultrafast laser-induced demagnetization of ferromagnetic films, and show also that the magneto-crystalline anisotropy energy is an important quantity to consider in such processes. Our study provides insights into the dynamics in magnetic systems9 as well as perspectives for the ultrafast control of information in magnetic recording media10.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Geometry of the pump–probe experiment.
Figure 2: Static energy resolved X-ray absorption spectra of CoPd film using circularly polarized light.
Figure 3: Femtosecond evolution of the magnetic and electronic states.
Figure 4: Femtosecond evolution of the magnetic spin and orbital moments.


  1. Bjorken, J. D. & Drell, S. D. Relativistic Quantum Mechanics Vol. 1 (McGraw-Hill Book Co., 1964)

    MATH  Google Scholar 

  2. Beaurepaire, E., Merle, J. C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996)

    ADS  CAS  Article  Google Scholar 

  3. Hohlfeld, J., Matthias, E., Knorren, R. & Bennemenn, K. H. Nonequilibrium magnetization dynamics of nickel. Phys. Rev. Lett. 78, 4861–4864 (1997)

    ADS  CAS  Article  Google Scholar 

  4. Scholl, A., Baumgarten, L., Jacquemin, R. & Eberhard, W. Ultrafast spin dynamics of ferromagnetic thin films observed by fs spin-resolved two-photon photoemission. Phys. Rev. Lett. 79, 5146–5149 (1997)

    ADS  CAS  Article  Google Scholar 

  5. Bigot, J.-Y., Vomir, M. & Beaurepaire, E. Coherent ultrafast magnetism induced by femtosecond laser pulses. Nature Phys. 5, 515–520 (2009)

    ADS  CAS  Article  Google Scholar 

  6. Zhang, G. P., Hübner, W., Beaurepaire, E. & Bigot, J.-Y. Laser-induced ultrafast demagnetization: femtomagnetism, a new frontier? Topics Appl. Phys. 83, 245–289 (2002)

    ADS  CAS  Article  Google Scholar 

  7. Bovensiepen, U. Magnetism in step with light. Nature Phys. 5, 461–463 (2009)

    ADS  CAS  Article  Google Scholar 

  8. Stamm, C. et al. Femtosecond modification of electron localization and transfer of angular momentum in nickel. Nature Mater. 6, 740–743 (2007)

    ADS  CAS  Article  Google Scholar 

  9. Stöhr, J. & Siegmann, H. C. Magnetism from Fundamentals to Nanoscale Dynamics (Springer, 2006)

    Google Scholar 

  10. Perpendicular magnetic recording. 〈

  11. Chikazumi, S. & Charap, S. H. Physics of Magnetism (Krieger Publishing, Malabar, Florida, 1978)

    Google Scholar 

  12. Daalderop, G. H., Kelly, P. J. & Schuurmans, M. F. First-principles calculation of the magnetic anisotropy energy of (Co) n /(X) m multilayers. Phys. Rev. B 42, 7270–7273 (1990)

    ADS  CAS  Article  Google Scholar 

  13. Weller, D. et al. Orbital magnetic moments of Co in multilayers with perpendicular magnetic anisotropy. Phys. Rev. B 49, 12888–12896 (1994)

    ADS  CAS  Article  Google Scholar 

  14. Stöhr, J. & König, H. Determination of spin- and orbital-moment anisotropies in transition metals by angle-dependent X-ray magnetic circular dichroism. Phys. Rev. Lett. 75, 3748–3751 (1995)

    ADS  Article  Google Scholar 

  15. Dürr, H. A. et al. Element-specific magnetic anisotropy determined by transverse magnetic circular x-ray dichroism. Science 277, 213–215 (1997)

    Article  Google Scholar 

  16. Koopmans, B., Ruigrok, J. J. M., Dalla Longa, F. & de Jonge, W. J. M. Unifying ultrafast magnetization dynamics. Phys. Rev. Lett. 95, 267207 (2005)

    ADS  CAS  Article  Google Scholar 

  17. Walowski, J. et al. Energy equilibrium processes of electrons, magnons, and phonons at the femtosecond time scale. Phys. Rev. Lett. 101, 237401 (2008)

    ADS  CAS  Article  Google Scholar 

  18. Khan, S., Holldack, K., Kachel, T., Mitzner, R. & Quast, T. Femtosecond undulator radiation from sliced electron bunches. Phys. Rev. Lett. 97, 074801 (2006)

    ADS  CAS  Article  Google Scholar 

  19. Weller, D. et al. microscopic origin of magnetic anisotropy in Au/Co/Au probed with X-ray magnetic circular dichroism. Phys. Rev. Lett. 75, 3752–3755 (1995)

    ADS  CAS  Article  Google Scholar 

  20. Dürr, H. A. & van der Laan, G. Magnetic circular dichroism in transversal geometry: importance of non-collinear moments. Phys. Rev. B 54, R760–R763 (1996)

    ADS  Article  Google Scholar 

  21. Thole, B. T., Carra, P., Sette, S. & van der Laan, G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 68, 1943–1946 (1992)

    ADS  CAS  Article  Google Scholar 

  22. Carra, P., Thole, B. T., Altarelli, M. & Wang, X. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 70, 694–697 (1993)

    ADS  CAS  Article  Google Scholar 

  23. Kamp, P. et al. Correlation of spin and orbital anisotropies with chemical order in Fe0. 5Pd0. 5 alloy films using magnetic circular X-ray dichroism. Phys. Rev. B 59, 1105–1112 (1999)

    ADS  CAS  Article  Google Scholar 

  24. Carva, K., Legut, D. & Oppeneer, P. M. Influence of laser-excited electron distributions on the X-ray magnetic circular dichroism spectra: implications for femtosecond demagnetization in Ni. Europhys. Lett. 86, 57002 (2009)

    ADS  Article  Google Scholar 

  25. Rhie, H.-S., Dürr, H. A. & Eberhardt, W. Femtosecond electron and spin dynamics in Ni/W(110) films. Phys. Rev. Lett. 90, 247201 (2003)

    ADS  Article  Google Scholar 

  26. Guidoni, L., Beaurepaire, E. & Bigot, J.-Y. Magneto-optics in the ultrafast regime : thermalization of spin populations in ferromagnetic films. Phys. Rev. Lett. 89, 017401 (2002)

    ADS  Article  Google Scholar 

  27. Bartel, A. F. et al. Element-specific spin and orbital momentum dynamics of Fe/Gd multilayers. Appl. Phys. Lett. 90, 162501 (2004)

    Google Scholar 

  28. Grange, W. et al. Magnetocrystalline anisotropy in (111) CoPt3 thin films probed by x-ray magnetic circular dichroism. Phys. Rev. B 58, 6298–6304 (1998)

    ADS  CAS  Article  Google Scholar 

  29. Anisimov, A. N. et al. Orbital magnetism and magnetic anisotropy probed with ferromagnetic resonance. Phys. Rev. Lett. 82, 2390–2393 (1999)

    ADS  CAS  Article  Google Scholar 

  30. Garreau, G., Farle, M., Beaurepaire, E. & Kappler, J. P. Second and fourth order anisotropy constants near the spin reorientation transition in Co/Ho thin films. Europhys. Lett. 39, 557–562 (1997)

    ADS  CAS  Article  Google Scholar 

Download references


We thank T. Quast, T. Kachel, K. Holldack and R. Mitzner for help and support during the femtoslicing experiments and J. Arabski, M. Acosta, M. Albrecht and V. Da Costa for sample elaboration and characterization. This work was supported by the CNRS–PICS, by Université de Strasbourg and by the EU Contract Integrated Infrastructure Initiative I3 in FP6-Project No. R II 3 CT-2004-5060008, BESSY IA-SFS Access Program. J.-Y.B. acknowledges a grant from the European Research Council in the final stage of this work (ERC-2009-AdG-20090325 #247452). H.A.D. acknowledges support through the PULSE Institute at SLAC by the US Department of Energy, Office of Basic Energy Sciences.

Author information

Authors and Affiliations



C.B., E.B., V.H., V.L.-F. and J.-Y.B designed, carried out the experiments and performed the data analysis. C.S., N.P. and H.A.D. developed the femtoslicing experiment. C.B. and J.-Y.B. wrote the paper. All the authors read and improved the manuscript.

Corresponding author

Correspondence to C. Boeglin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Data, References and Supplementary Figures A1-A6 with legends. (PDF 841 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boeglin, C., Beaurepaire, E., Halté, V. et al. Distinguishing the ultrafast dynamics of spin and orbital moments in solids. Nature 465, 458–461 (2010).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing