Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge

Abstract

The direction of tectonic plate motion at the Earth’s surface and the flow field of the mantle inferred from seismic anisotropy are well correlated globally, suggesting large-scale coupling between the mantle and the surface plates1,2. The fit is typically poor at subduction zones, however, where regional observations of seismic anisotropy suggest that the direction of mantle flow is not parallel to3,4,5,6,7 and may be several times faster than6 plate motions. Here we present three-dimensional numerical models of buoyancy-driven deformation with realistic slab geometry for the Alaska subduction–transform system and use them to determine the origin of this regional decoupling of flow. We find that near a subduction zone edge, mantle flow velocities can have magnitudes of more than ten times the surface plate motions, whereas surface plate velocities are consistent with plate motions8 and the complex mantle flow field is consistent with observations from seismic anisotropy5. The seismic anisotropy observations constrain the shape of the eastern slab edge and require non-Newtonian mantle rheology. The incorporation of the non-Newtonian viscosity9,10 results in mantle viscosities of 1017 to 1018 Pa s in regions of high strain rate (10-12 s-1), and this low viscosity enables the mantle flow field to decouple partially from the motion of the surface plates. These results imply local rapid transport of geochemical signatures through subduction zones and that the internal deformation of slabs decreases the slab-pull force available to drive subducting plates.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of full model domain and slab geometry.
Figure 2: Maps of flow field.
Figure 3: 3D mantle flow field and viscosity structure.
Figure 4: Velocity and ISA orientations at 100-km depth.

References

  1. 1

    Becker, T. W., Kellogg, J. B., Ekstrom, G. & O’Connell, R. J. Comparison of azimuthal seismic anisotropy from surface waves and finite strain from global mantle-circulation models. Geophys. J. Int. 155, 696–714 (2003)

    ADS  Article  Google Scholar 

  2. 2

    Conrad, C. P., Behn, M. D. & Silver, P. G. Global mantle flow and the development of seismic anisotropy: differences between the oceanic and continental upper mantle. J. Geophys. Res. 112, B07317 (2007)

    ADS  Article  Google Scholar 

  3. 3

    Russo, R. M. & Silver, P. G. Trench-parallel flow beneath the Nazca Plate from seismic anisotropy. Science 263, 1105–1111 (1994)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Smith, G. P. et al. A complex pattern of mantle flow in the Lau backarc. Science 292, 713–716 (2001)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Christensen, D. H. & Abers, G. A. Seismic anisotropy under central Alaska from SKS splitting observations. J. Geophys. Res. 115, BO4315 (2010)

    ADS  Article  Google Scholar 

  6. 6

    Hoernle, K. et al. Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature 451, 1094–1097 (2008)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Long, M. & Silver, P. G. The subduction zone flow field from seismic anisotropy: a global view. Science 319, 315–318 (2008)

    ADS  CAS  Article  Google Scholar 

  8. 8

    DeMets, C. & Dixon, T. H. New kinematic models for Pacific-North American motion from 3 Ma to present: evidence for steady state motion and biases in the NUVEL-1A model. Geophys. Res. Lett. 26, 1921–1924 (1999)

    ADS  Article  Google Scholar 

  9. 9

    Hirth, G. & Kohlstedt, D. in Inside the Subduction Factory (ed. Eiler, J.) 83–105 (American Geophysical Union, 2003)

    Google Scholar 

  10. 10

    Karato, S., Jung, H., Katayama, I. & Skemer, P. Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annu. Rev. Earth Planet. Sci. 36, 59–95 (2008)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Savage, M. K. Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting? Rev. Geophys. 374, 65–106 (1999)

    ADS  Article  Google Scholar 

  12. 12

    Kaminiski, É. & Ribe, N. M. Timescales for the evolution of seismic anisotropy in mantle flow. Geochem. Geophys. Geosyst. 3, 1051 (2002)

    ADS  Google Scholar 

  13. 13

    Peyton, V. et al. Mantle flow at a slab edge: seismic anisotropy in the Kamchatka region. Geophys. Res. Lett. 28, 379–382 (2001)

    ADS  Article  Google Scholar 

  14. 14

    Zhong, S. & Gurnis, M. Interaction of weak faults and non-Newtonian rheology produces plate tectonics in a 3D model of mantle flow. Nature 383, 245–247 (1996)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Zhong, S., Gurnis, M. & Moresi, L. Role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle flow models. J. Geophys. Res. 103, 15255–15268 (1998)

    ADS  Article  Google Scholar 

  16. 16

    Schellart, W. P. Kinematics of subduction and subduction-induced flow in the upper mantle. J. Geophys. Res. 109, B07401 (2004)

    ADS  Article  Google Scholar 

  17. 17

    Funiciello, F. et al. Mapping mantle flow during retreating subduction: laboratory models analyzed by feature tracking. J. Geophys. Res. 111, B03402 (2006)

    ADS  Article  Google Scholar 

  18. 18

    Piromallo, C., Becker, T. W., Funiciello, F. & Faccenna, C. Three-dimensional instantaneous mantle flow induced by subduction. Geophys. Res. Lett. 33, L08304 (2006)

    ADS  Article  Google Scholar 

  19. 19

    Stegman, D. R., Freeman, J., Schellart, W. P., Moresi, L. & May, D. Influence of trench width on subduction hinge retreat rates in 3-D models of slab rollback. Geochem. Geophys. Geosyst. 7, Q03012 (2006)

    ADS  Article  Google Scholar 

  20. 20

    Kneller, E. A. & van Keken, P. E. Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems. Nature 450, 1222–1225 (2007)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Garfunkel, Z., Anderson, C. A. & Schubert, G. Mantle circulation and the lateral migration of subducted slabs. J. Geophys. Res. 91, 7205–7223 (1986)

    ADS  Article  Google Scholar 

  22. 22

    Billen, M. I. & Hirth, G. Rheologic controls on slab dynamics. Geochem. Geophys. Geosyst. 8, Q08012 (2007)

    ADS  Article  Google Scholar 

  23. 23

    Lallemand, S. E., Heuret, A. & Boutelier, D. On the relationships between slab dip, back-arc stress, upper plate absolute motion and crustal nature in subduction zones. Geochem. Geophys. Geosyst. 6, Q09006 (2005)

    ADS  Article  Google Scholar 

  24. 24

    Preece, S. J. & Hart, W. K. Geochemical variations in the 5 Ma Wrangell Volcanic Field, Alaska: implications for the magmatic and tectonic development of a complex continental arc system. Tectonophysics 392, 165–191 (2004)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Turner, S., Bourdon, B. & Gill, J. Insights into magma genesis at convergent margins from U-series isotopes. Rev. Mineral. Geochem. 52, 255–315 (2003)

    CAS  Article  Google Scholar 

  26. 26

    Conder, J. A., Wiens, D. A. & Morries, J. On the decompression melting structure at volcanic arcs and back-arc spreading centers. Geophys. Res. Lett. 29 10.1029/2002GL015390 (2002)

  27. 27

    Conrad, C. P. & Lithgow-Bertelloni, C. How mantle slabs drive plate tectonics. Science 298, 207–209 (2002)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Zhong, S. Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature and upper mantle temperature. J. Geophys. Res. 111, B04409 (2006)

    ADS  Article  Google Scholar 

  29. 29

    Moresi, L. & Gurnis, M. Constraints on the lateral strength of slabs from three-dimensional dynamic flow models. Earth Planet. Sci. Lett. 138, 15–28 (1996)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Müller, R. D., Roest, W. R., Royer, J. Y., Gahagan, L. M. & Sclater, J. G. Digital isochrons of the world’s ocean floor. J. Geophys. Res. 102, 3211–3214 (1997)

    ADS  Article  Google Scholar 

  31. 31

    Turcotte, D. L. & Schubert, G. Geodynamics 2nd edn, 153–161 (Cambridge Univ. Press, 2002)

    Google Scholar 

  32. 32

    Kohlstedt, D. L., Evans, B. & Mackwell, S. J. Strength of the lithosphere: constraints imposed by laboratory experiments. J. Geophys. Res. 100, 17587–17602 (1995)

    ADS  Article  Google Scholar 

  33. 33

    Moresi, L. N. & Solomatov, V. S. Numerical investigations of two-dimensional convection with extremely large viscosity variations. Phys. Fluids 9, 2142–2162 (1995)

    MATH  Google Scholar 

  34. 34

    Moresi, L., Zhong, S. & Gurnis, M. The accuracy of finite element solutions of Stokes’ flow with strongly varying viscosity. Earth Planet. Sci. Lett. 97, 83–94 (1996)

    Article  Google Scholar 

  35. 35

    Jadamec, M. A. Three-Dimensional Lithosphere and Mantle Dynamics: Models of the Subduction-Transform Plate Boundary System in Southern Alaska. PhD thesis, Univ. California, Davis (2009)

    Google Scholar 

  36. 36

    Zandt, G. & Humphreys, E. Toroidal mantle flow through the western U.S. slab window. Geology 36, 295–298 (2008)

    ADS  Article  Google Scholar 

  37. 37

    Lassak, T. M., Fouch, M. J. & Kaminiski, É. Seismic characterization of mantle flow in subduction systems: can we resolve a hydrated mantle wedge? Earth Planet. Sci. Lett. 243, 632–649 (2006)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Science Foundation grant EAR-0537995. High-resolution models were run on the TeraGrid cluster Lonestar at the Texas Advanced Computing Center, through grant TG-EAR080015N. We thank Computational Infrastructure for Geodynamics for the CitcomCU source code and C. Conrad and M. Behn for the source code used to calculate the ISAs. 3D data were visualized at the W. M. Keck Center for Active Visualization in the Earth Sciences at the University of California, Davis. We thank D. Christensen and G. Abers (shear-wave splitting data) and N. Ruppert (earthquake hypocentral data). We thank D. Turcotte, L. Kellogg, O. Kreylos, D. Eberhart-Phillips, S. M. Roeske, J. Dewey, T. Taylor, L. Moresi and G. Hirth for comments and discussions.

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to the overall development of the project, model design considerations, analysis and interpretations. M.A.J. performed all of the numerical modelling, except for the ISA calculations, which were done by M.I.B.

Corresponding author

Correspondence to Margarete A. Jadamec.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This files contains Supplementary Notes comprising Model design; Slab structure; Thermal structure; Rheology; Model results; Pacific plate motion and Comparisons of ISA and SKS; Supplementary Figures 1-8 with legends; Supplementary Tables 1-4 and References. (PDF 2775 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jadamec, M., Billen, M. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge. Nature 465, 338–341 (2010). https://doi.org/10.1038/nature09053

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.