Abstract
Atomic nuclei have a shell structure1 in which nuclei with ‘magic numbers’ of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important2,3,4,5 for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133Sn that lie outside the double shell closure present at the short-lived nucleus 132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132Sn.
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1.
Mayer, M. G. & Jensen, J. H. D. Theory of Nuclear Shell Structure (Wiley, 1955)
- 2.
Barbieri, C. & Hjorth-Jensen, M. Quasiparticle and quasihole states of nuclei around 56Ni. Phys. Rev. C 79, 064313 (2009)
- 3.
Kartamyshev, M. P., Engeland, T., Hjorth-Jensen, M. & Osnes, E. Effective Interactions and shell model studies of heavy tin isotopes. Phys. Rev. C 76, 024313 (2007)
- 4.
Sarkar, S. & Sarkar, M. S. Shell model study of neutron-rich nuclei near 132Sn. Phys. Rev. C 64, 014312 (2001)
- 5.
Grawe, H., Langanke, K. & Martínez-Pinedo, G. Nuclear structure and astrophysics. Rep. Prog. Phys. 70, 1525–1582 (2007)
- 6.
Cowan, J. J., Thielemann, F.-K. & Truran, J. W. The r-process and nucleochronology. Phys. Rep. 208, 267–394 (1991)
- 7.
Coraggio, L., Covello, A., Gargano, A. & Itaco, N. Similarity of nuclear structure in the 132Sn and 208Pb regions: proton–neutron multiplets. Phys. Rev. C 80, 021305(R) (2009)
- 8.
Terasaki, J., Engel, J., Nazarewicz, W. & Stoitsov, M. Anomalous behavior of 2+ excitations around 132Sn. Phys. Rev. C 66, 054313 (2002)
- 9.
Hoff, P. et al. Single-neutron states in 133Sn. Phys. Rev. Lett. 77, 1020–1023 (1996)
- 10.
Urban, W. et al. Neutron single-particle energies in the 132Sn region. Eur. Phys. J. A 5, 239–241 (1999)
- 11.
Kozub, R. L. et al. Neutron single particle strengths from the (d,p) reaction on 18F. Phys. Rev. C 73, 044307 (2006)
- 12.
Thomas, J. S. et al. Single-neutron excitations in neutron-rich 83Ge and 85Se. Phys. Rev. C 76, 044302 (2007)
- 13.
Rehm, K. E. et al. Study of the 56Ni(d,p)57Ni reaction and the astrophysical 56Ni(p,γ)57Cu reaction rate. Phys. Rev. Lett. 80, 676–679 (1998)
- 14.
Stracener, D. W. Status of radioactive ion beams at the HRIBF. Nucl. Instrum. Methods A 521, 126–135 (2004)
- 15.
Pain, S. D. et al. Development of a high solid-angle silicon detector array for measurement of transfer reactions in inverse kinematics. Nucl. Instrum. Methods B 261, 1122–1125 (2007)
- 16.
Wiza, J. L. Microchannel plate detectors. Nucl. Instrum. Methods 162, 587–601 (1979)
- 17.
Thompson, I. J. Coupled reaction channels calculations in nuclear physics. Comput. Phys. Rep. 7, 167–211 (1988)
- 18.
Reid, R. V. Local phenomenological nucleon–nucleon potentials. Ann. Phys. 50, 411–448 (1968)
- 19.
Strömich, A. et al. (d,p) reactions on 124Sn, 130Te, 138Ba, 140Ce, 142Nd, and 208Pb below and near the Coulomb barrier. Phys. Rev. C 16, 2193–2207 (1977)
- 20.
Pang, D. Y., Nunes, F. M. & Mukhamedzhanov, A. M. Are spectroscopic factors from transfer reactions consistent with asymptotic normalization coefficients? Phys. Rev. C 75, 024601 (2007)
- 21.
Kramer, G. J., Blok, H. P. & Lapikás, L. A consistent analysis of (e,e′p) and (d,3He) experiments. Nucl. Phys. A 679, 267–286 (2001)
- 22.
Ellegaard, C., Kantele, J. & Vedelsby, P. Particle–vibration coupling in 209Pb. Nucl. Phys. A 129, 113–128 (1969)
- 23.
Hirota, K., Aoki, Y., Okumura, N. & Tagishi, Y. Deuteron elastic scattering and (d,p) reactions on 208Pb at Ed = 22 MeV and j-dependence of T20 in (d,p) reaction. Nucl. Phys. A 628, 547–579 (1998)
Acknowledgements
This work was supported by the US Department of Energy under contract numbers DEFG02-96ER40995 (Tennessee Technological University (TTU)), DE-FG52-03NA00143 (Rutgers, Oak Ridge Associated Universities), DE-AC05-00OR22725 (Oak Ridge National Laboratory), DE-FG02-96ER40990 (TTU), DE-FG03-93ER40789 (Colorado School of Mines), DE-FG02-96ER40983 (University of Tennessee, Knoxville), DE-FG52-08NA28552 (Michigan State University (MSU)), DE-AC02-06CH11357 (MSU), the National Science Foundation under contract numbers NSF-PHY0354870 and NSF-PHY0757678 (Rutgers) and NSF-PHY-0555893 (MSU), and the UK Science and Technology Funding Council under contract number PP/F000715/1.
Author information
Affiliations
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
- K. L. Jones
- , K. Y. Chae
- , R. Kapler
- , Z. Ma
- & B. H. Moazen
Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA
- K. L. Jones
- , J. A. Cizewski
- , R. Hatarik
- , S. D. Pain
- & T. P. Swan
Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
- A. S. Adekola
Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- D. W. Bardayan
- , J. C. Blackmon
- , J. F. Liang
- , C. D. Nesaraja
- , D. Shapira
- & M. S. Smith
Physics Department, Colorado School of Mines, Golden, Colorado 80401, USA
- K. A. Chipps
- , L. Erikson
- & R. Livesay
Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK
- C. Harlin
- , N. P. Patterson
- , T. P. Swan
- & J. S. Thomas
Department of Physics, Tennessee Technological University, Cookeville, Tennessee 38505, USA
- R. L. Kozub
- & J. F. Shriner Jr
National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
- F. M. Nunes
Authors
Search for K. L. Jones in:
Search for A. S. Adekola in:
Search for D. W. Bardayan in:
Search for J. C. Blackmon in:
Search for K. Y. Chae in:
Search for K. A. Chipps in:
Search for J. A. Cizewski in:
Search for L. Erikson in:
Search for C. Harlin in:
Search for R. Hatarik in:
Search for R. Kapler in:
Search for R. L. Kozub in:
Search for J. F. Liang in:
Search for R. Livesay in:
Search for Z. Ma in:
Search for B. H. Moazen in:
Search for C. D. Nesaraja in:
Search for F. M. Nunes in:
Search for S. D. Pain in:
Search for N. P. Patterson in:
Search for D. Shapira in:
Search for J. F. Shriner in:
Search for M. S. Smith in:
Search for T. P. Swan in:
Search for J. S. Thomas in:
Contributions
K.L.J., D.W.B., J.C.B., J.A.C., R.L.K., J.F.L., C.D.N., S.D.P., D.S., M.S.S. and J.S.T. designed the experiment and developed the experimental tools and techniques. K.L.J., D.W.B., J.C.B., K.Y.C., R.H., R.L.K., J.F.L., B.H.M., S.D.P. and D.S. set up the experimental equipment, including new, unique detectors and associated electronics. K.L.J., D.W.B., J.C.B., K.Y.C., R.L.K., B.H.M., S.D.P., T.P.S. and J.S.T. developed online and offline analysis software routines and algorithms. K.L.J., A.S.A., D.W.B., J.C.B., K.Y.C., K.A.C., L.E., C.H., R.H., R.K., R.L.K., J.F.L., R.L., Z.M., B.H.M., C.D.N., S.D.P., N.P.P., D.S., J.F.S., M.S.S., T.P.S. and J.S.T. while running the experiment, assessed the quality and performed preliminary analyses of online data. K.L.J., K.Y.C., R.K., R.L.K., B.H.M., S.D.P. and T.P.S. analysed the data and calibrations. K.L.J., D.W.B., J.A.C., R.L.K., F.M.N. and S.D.P. interpreted the data, including theoretical calculations. K.L.J., J.A.C. and F.M.N. wrote the manuscript. K.L.J., D.W.B., J.C.B, K.A.C., J.A.C., R.L.K., J.F.L., F.M.N., S.D.P., J.F.S., M.S.S. and J.S.T. revised the manuscript.
Competing interests
The authors declare no competing financial interests.
Corresponding author
Correspondence to K. L. Jones.
Supplementary information
PDF files
- 1.
Supplementary information
This file contains Supplementary Data, Supplementary Figures 4-5 with legends, Supplementary Tables 2-5 and References.
Rights and permissions
To obtain permission to re-use content from this article visit RightsLink.
About this article
Further reading
-
Determination of astrophysical 7Be(p, γ)8B reaction rates from the 7Li(d, p)8Li reaction
Science China Physics, Mechanics & Astronomy (2015)
-
Recent advances in nuclear physics through on-line isotope separation
Nature Physics (2014)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.