Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes

Subjects

Abstract

NGC 6791 is a well studied open cluster1 that it is so close to us that can be imaged down to very faint luminosities2. The main-sequence turn-off age (8 Gyr) and the age derived from the termination of the white dwarf cooling sequence (6 Gyr) are very different. One possible explanation is that as white dwarfs cool, one of the ashes of helium burning, 22Ne, sinks in the deep interior of these stars3,4,5. At lower temperatures, white dwarfs are expected to crystallize and phase separation of the main constituents of the core of a typical white dwarf (12C and 16O) is expected to occur6,7. This sequence of events is expected to introduce long delays in the cooling times8,9, but has not hitherto been proven. Here we report that, as theoretically anticipated5,6, physical separation processes occur in the cores of white dwarfs, resolving the age discrepancy for NGC 6791.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Colour–magnitude diagrams of the white dwarfs in NGC 6791.
Figure 2: White dwarf luminosity function of NGC 6791.

Similar content being viewed by others

References

  1. Bedin, L. R. et al. The white dwarf cooling sequence in NGC 6791. Astrophys. J. 624, L45–L48 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Bedin, L. R. et al. Reaching the end of the white dwarf cooling sequence in NGC 6791. Astrophys. J. 678, 1279–1291 (2008)

    Article  ADS  Google Scholar 

  3. Bravo, E., Isern, J., Labay, J. & Canal, R. On the contribution of Ne22 to the synthesis of Fe54 and Ni58 in thermonuclear supernovae. Astron. Astrophys. 257, 534–538 (1992)

    ADS  CAS  Google Scholar 

  4. Bildsten, L. & Hall, D. M. Gravitational settling of 22Ne in liquid white dwarf interiors. Astrophys. J. 549, L219–L223 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Deloye, C. J. & Bildsten, L. Gravitational settling of 22Ne in liquid white dwarf interiors: cooling and seismological effects. Astrophys. J. 580, 1077–1090 (2002)

    Article  ADS  CAS  Google Scholar 

  6. García-Berro, E., Hernanz, M., Mochkovitch, R. & Isern, J. Theoretical white-dwarf luminosity functions for two phase diagrams of the carbon-oxygen dense plasma. Astron. Astrophys. 193, 141–147 (1988)

    ADS  Google Scholar 

  7. García-Berro, E., Hernanz, M., Isern, J. & Mochkovitch, R. Properties of high-density binary mixtures and the age of the universe from white dwarf stars. Nature 333, 642–644 (1988)

    Article  ADS  Google Scholar 

  8. Segretain, L. et al. Cooling theory of crystallized white dwarfs. Astrophys. J. 434, 641–651 (1994)

    Article  ADS  CAS  Google Scholar 

  9. García-Berro, E., Althaus, L. G., Córsico, A. H. & Isern, J. Gravitational settling of 22Ne and white dwarf evolution. Astrophys. J. 677, 473–482 (2008)

    Article  ADS  Google Scholar 

  10. Bedin, L. R. et al. The puzzling white dwarf cooling sequence in NGC 6791: a simple solution. Astrophys. J. 679, L29–L32 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Kalirai, J. S. et al. Stellar evolution in NGC 6791: mass loss on the red giant branch and the formation of low-mass white dwarfs. Astrophys. J. 671, 748–760 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Althaus, L. G. et al. New evolutionary sequences for hot H-deficient white dwarfs on the basis of a full account of progenitor evolution. Astrophys. J. 704, 1605–1615 (2009)

    Article  ADS  CAS  Google Scholar 

  13. Isern, J., Mochkovitch, R., García-Berro, E. & Hernanz, M. The physics of crystallizing white dwarfs. Astrophys. J. 485, 308–312 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Isern, J., García-Berro, E., Hernanz, M. & Chabrier, G. The energetics of crystallizing white dwarfs revisited again. Astrophys. J. 528, 397–400 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Segretain, L. Three-body crystallization diagrams and the cooling of white dwarfs. Astron. Astrophys. 310, 485–488 (1996)

    ADS  CAS  Google Scholar 

  16. Segretain, L. & Chabrier, G. Crystallization of binary ionic mixtures in dense stellar plasmas. Astron. Astrophys. 271, L13–L16 (1993)

    ADS  CAS  Google Scholar 

  17. García-Berro, E., Torres, S., Isern, J. & Burkert, A. Monte Carlo simulations of the disc white dwarf population. Mon. Not. R. Astron. Soc. 302, 173–188 (1999)

    Article  ADS  Google Scholar 

  18. Torres, S., García-Berro, E., Burkert, A. & Isern, J. High-proper-motion white dwarfs and halo dark matter. Mon. Not. R. Astron. Soc. 336, 971–978 (2002)

    Article  ADS  Google Scholar 

  19. García-Berro, E., Torres, S., Isern, J. & Burkert, A. Monte Carlo simulations of the halo white dwarf population. Astron. Astrophys. 418, 53–65 (2004)

    Article  ADS  Google Scholar 

  20. Weiss, A. & Ferguson, J. W. New asymptotic giant branch models for a range of metallicities. Astron. Astrophys. 508, 1343–1358 (2009)

    Article  ADS  CAS  Google Scholar 

  21. Ferrario, L., Wickramasinghe, D., Liebert, J. & Williams, K. A. The open-cluster initial-final mass relationship and the high-mass tail of the white dwarf distribution. Mon. Not. R. Astron. Soc. 361, 1131–1135 (2005)

    Article  ADS  Google Scholar 

  22. Grundahl, F., Clausen, J. V., Hardis, S. & Frandsen, S. A new standard: age and distance for the open cluster NGC 6791 from the eclipsing binary member V20. Astron. Astrophys. 492, 171–184 (2008)

    Article  ADS  CAS  Google Scholar 

  23. Gratton, R., Bragaglia, A., Carretta, E. & Tosi, M. The metallicity of the old open cluster NGC 6791. Astrophys. J. 642, 462–469 (2006)

    Article  ADS  CAS  Google Scholar 

  24. Bedin, L. R. et al. The white dwarf cooling sequence in NGC 6791. Astrophys. J. 624, L45–L48 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Catalán, S., Isern, J., García-Berro, E. & Ribas, I. The initial-final mass relationship of white dwarfs revisited: effect on the luminosity function and mass distribution. Mon. Not. R. Astron. Soc. 387, 1693–1706 (2008)

    Article  ADS  Google Scholar 

  26. Pietrinferni, A., Cassisi, S., Salaris, M. & Castelli, F. A large stellar evolution database for population synthesis studies. I. Scaled solar models and isochrones. Astrophys. J. 612, 168–190 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by MCINN, AGENCIA, the Generalitat de Catalunya, STFC and CONICET. L.G.A. also acknowledges a PIV grant from the AGAUR of the Generalitat de Catalunya. We are indebted to L. Bedin and co-authors for providing the observational colour–magnitude diagram of Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

E.G.-B. and L.G.A. conceived the study. E.G.-B. wrote the paper. J.I., P.L.-A. and E.G.-B. computed the theoretical expressions for the time delays introduced by the different separation processes. L.G.A., I.R., A.H.C. and E.G.-B. computed the cooling sequences. R.D.R. provided the appropriate colours. S.T., E.G.-B. and J.I. did the Monte Carlo simulations. M.S. computed the main-sequence evolutionary ages and errors. All authors discussed the results and made substantial contributions to the manuscript.

Corresponding author

Correspondence to Enrique García-Berro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Berro, E., Torres, S., Althaus, L. et al. A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes. Nature 465, 194–196 (2010). https://doi.org/10.1038/nature09045

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09045

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing