Abstract
DNA methylation is an important epigenetic mark in many eukaryotes1,2,3,4,5. In plants, 24-nucleotide small interfering RNAs (siRNAs) bound to the effector protein, Argonaute 4 (AGO4), can direct de novo DNA methylation by the methyltransferase DRM2 (refs 2, 4–6). Here we report a new regulator of RNA-directed DNA methylation (RdDM) in Arabidopsis: RDM1. Loss-of-function mutations in the RDM1 gene impair the accumulation of 24-nucleotide siRNAs, reduce DNA methylation, and release transcriptional gene silencing at RdDM target loci. RDM1 encodes a small protein that seems to bind single-stranded methyl DNA, and associates and co-localizes with RNA polymerase II (Pol II, also known as NRPB), AGO4 and DRM2 in the nucleus. Our results indicate that RDM1 is a component of the RdDM effector complex and may have a role in linking siRNA production with pre-existing or de novo cytosine methylation. Our results also indicate that, although RDM1 and Pol V (also known as NRPE) may function together at some RdDM target sites in the peri-nucleolar siRNA processing centre, Pol II rather than Pol V is associated with the RdDM effector complex at target sites in the nucleoplasm.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A cryo-EM structure of KTF1-bound polymerase V transcription elongation complex
Nature Communications Open Access 30 May 2023
-
NODULIN HOMEOBOX is required for heterochromatin homeostasis in Arabidopsis
Nature Communications Open Access 27 August 2022
-
An siRNA-guided ARGONAUTE protein directs RNA polymerase V to initiate DNA methylation
Nature Plants Open Access 08 November 2021
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Change history
06 May 2010
Reference 23 was updated to reflect a change in the title.
References
Martienssen, R. A. & Richards, E. J. DNA methylation in eukaryotes. Curr. Opin. Genet. Dev. 5, 234–242 (1995)
Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004)
Tariq, M. & Paszkowski, J. DNA and histone methylation in plants. Trends Genet. 20, 244–251 (2004)
Chan, S. W., Henderson, I. R. & Jacobsen, S. E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nature Rev. Genet. 6, 351–360 (2005)
Matzke, M. A. & Birchler, J. A. RNAi-mediated pathways in the nucleus. Nature Rev. Genet. 6, 24–35 (2005)
Matzke, M., Kanno, T., Daxinger, L., Huettel, B. & Matzke, A. J. M. RNA-mediated chromatin-based silencing in plants. Curr. Opin. Cell Biol. 21, 367–376 (2009)
Gong, Z. et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111, 803–814 (2002)
Zhu, J., Kapoor, A., Sridhar, V. V., Agius, F. & Zhu, J. K. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr. Biol. 17, 54–59 (2007)
Penterman, J. et al. DNA demethylation in the Arabidopsis genome. Proc. Natl Acad. Sci. USA 104, 6752–6757 (2007)
Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008)
He, X. J. et al. NRPD4, a protein similar to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for siRNA production, RNA-directed DNA methylation, and transcriptional gene silencing. Genes Dev. 23, 318–330 (2009)
Huettel, B. et al. Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis. EMBO J. 25, 2828–2836 (2006)
Pontes, O. et al. The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126, 79–92 (2006)
Li, C. F. et al. An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126, 93–106 (2006)
Li, C. F. et al. Dynamic regulation of ARGONAUTE4 within multiple nuclear bodies in Arabidopsis thaliana. PLoS Genet. 4, e27 (2008)
Allard, S. T. et al. Structure at 1.6 Å resolution of the protein from gene locus At3g22680 from Arabidopsis thaliana. Acta Crystallogr. F 61, 647–650 (2005)
Slotkin, R. K. et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136, 461–472 (2009)
Zilberman, D. et al. Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr. Biol. 14, 1214–1220 (2004)
Qi, Y. et al. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443, 1008–1012 (2006)
Chan, S. W., Zhang, X., Bernatavichute, Y. V. & Jacobsen, S. E. Two-step recruitment of RNA-directed DNA methylation to tandem repeats. PLoS Biol. 4, e363 (2006)
Zheng, B. et al. Intergenic transcription by RNA Polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev. 23, 2850– (2009)
Wierzbicki, A. T., Haag, J. R. & Pikaard, C. S. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135, 635–648 (2008)
Law, J. A. et al. A protein complex required for polymerase V dependent transcripts and RNA-directed DNA methylation in plants. Curr. Biol. (in the press)
He, X. J. et al. An effector of RNA-directed DNA methylation in Arabidopsis is an ARGONAUTE 4-and RNA-binding protein. Cell 137, 498–508 (2009)
Woo, H. R., Pontes, O., Pikaard, C. S. & Richards, E. J. VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization. Genes Dev. 21, 267–277 (2007)
Ishitani, M., Xiong, L., Stevenson, B. & Zhu, J. K. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9, 1935–1949 (1997)
Kapoor, A. et al. Mutations in a conserved replication protein suppress transcriptional gene silencing in a DNA-methylation-independent manner in Arabidopsis. Curr. Biol. 15, 1912–1918 (2005)
Dorweiler, J. E. et al. Mediator of paramutation1 is required for establishment and maintenance of paramutation at multiple maize loci. Plant Cell 12, 2101–2118 (2000)
Jasencakova, Z., Meister, A., Walter, J., Turner, B. M. & Schubert, I. Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12, 2087–2100 (2000)
Gendrel, A. V., Lippman, Z., Yordan, C., Colot, V. & Martienssen, R. A. Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297, 1871–1873 (2002)
Acknowledgements
This work was supported by National Institutes of Health grants (J.-K.Z.), Austrian Fonds zur Förderung der wissenschaftlichen Forschung (M.M. and Z.J.L.), National Science Foundation Career Award (H.J.), Edward Mallinckrodt Foundation Award (O.P.), and Agence Nationale de la Recherche (T.L.). We thank E. Richards for his gift of methylated DNA oligonucleotides, B. Stevenson for technical assistance and T. Kanno for discussions.
Author information
Authors and Affiliations
Contributions
Z.G., H.-L.L, X.H., W.Q., H.L., M.X., S.Z., D.M., and X.Z. contributed Figs 1, 2, 3b–d, Supplementary Figs 1–6 and 9–12, and Supplementary Table 2. L.D, Z.J.L., A.J.M. and M.M. contributed the rdm1-4 allele (Supplementary Fig. 5) and data on its characterization (Supplementary Fig. 7). O.P. and C.S.P contributed Fig. 4, Supplementary Fig. 8 and Supplementary Table 1. D.P and T.L. contributed Fig. 3a. J.-K.Z designed the experiments and wrote the paper together with Z.G., H.J., O.P., C.S.P. and M.M.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
This file contains Supplementary Figures S1-S12 with legends, Supplementary Tables S1-S2 and References. (PDF 1869 kb)
Rights and permissions
About this article
Cite this article
Gao, Z., Liu, HL., Daxinger, L. et al. An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature 465, 106–109 (2010). https://doi.org/10.1038/nature09025
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature09025
This article is cited by
-
A cryo-EM structure of KTF1-bound polymerase V transcription elongation complex
Nature Communications (2023)
-
NODULIN HOMEOBOX is required for heterochromatin homeostasis in Arabidopsis
Nature Communications (2022)
-
Harnessing epigenetic variability for crop improvement: current status and future prospects
Genes & Genomics (2022)
-
BPM1 regulates RdDM-mediated DNA methylation via a cullin 3 independent mechanism
Plant Cell Reports (2022)
-
UVR8 interacts with de novo DNA methyltransferase and suppresses DNA methylation in Arabidopsis
Nature Plants (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.