Abstract
The detection of water and the regulation of water intake are essential for animals to maintain proper osmotic homeostasis1. Drosophila and other insects have gustatory sensory neurons that mediate the recognition of external water sources2,3,4, but little is known about the underlying molecular mechanism for water taste detection. Here we identify a member of the degenerin/epithelial sodium channel family5, PPK28, as an osmosensitive ion channel that mediates the cellular and behavioural response to water. We use molecular, cellular, calcium imaging and electrophysiological approaches to show that ppk28 is expressed in water-sensing neurons, and that loss of ppk28 abolishes water sensitivity. Moreover, ectopic expression of ppk28 confers water sensitivity to bitter-sensing gustatory neurons in the fly and sensitivity to hypo-osmotic solutions when expressed in heterologous cells. These studies link an osmosensitive ion channel to water taste detection and drinking behaviour, providing the framework for examining the molecular basis for water detection in other animals.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bourque, C. W. Central mechanisms of osmosensation and systemic osmoregulation. Nature Rev. Neurosci. 9, 519–531 (2008)
Evans, D. R. & Mellon, D. Electrophysiological studies of a water receptor associated with the taste sensilla of the blow-fly. J. Gen. Physiol. 45, 487–500 (1962)
Meunier, N., Ferveur, J. F. & Marion-Poll, F. Sex-specific non-pheromonal taste receptors in Drosophila. Curr. Biol. 10, 1583–1586 (2000)
Inoshita, T. & Tanimura, T. Cellular identification of water gustatory receptor neurons and their central projection pattern in Drosophila. Proc. Natl Acad. Sci. USA 103, 1094–1099 (2006)
Kellenberger, S. & Schild, L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol. Rev. 82, 735–767 (2002)
Awasaki, T. & Kimura, K. pox-neuro is required for development of chemosensory bristles in Drosophila. J. Neurobiol. 32, 707–721 (1997)
Boll, W. & Noll, M. The Drosophila Pox neuro gene: control of male courtship behavior and fertility as revealed by a complete dissection of all enhancers. Development 129, 5667–5681 (2002)
Yarmolinsky, D. A., Zuker, C. S. & Ryba, N. J. Common sense about taste: from mammals to insects. Cell 139, 234–244 (2009)
Chyb, S., Dahanukar, A., Wickens, A. & Carlson, J. R. Drosophila Gr5a encodes a taste receptor tuned to trehalose. Proc. Natl Acad. Sci. USA 100 (suppl. 2). 14526–14530 (2003)
Thorne, N., Chromey, C., Bray, S. & Amrein, H. Taste perception and coding in Drosophila. Curr. Biol. 14, 1065–1079 (2004)
Wang, Z., Singhvi, A., Kong, P. & Scott, K. Taste representations in the Drosophila brain. Cell 117, 981–991 (2004)
Marella, S. et al. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49, 285–295 (2006)
Moon, S. J., Kottgen, M., Jiao, Y., Xu, H. & Montell, C. A taste receptor required for the caffeine response in vivo. Curr. Biol. 16, 1812–1817 (2006)
Fischler, W., Kong, P., Marella, S. & Scott, K. The detection of carbonation by the Drosophila gustatory system. Nature 448, 1054–1057 (2007)
Meunier, N., Marion-Poll, F. & Lucas, P. Water taste transduction pathway is calcium dependent in Drosophila. Chem. Senses 34, 441–449 (2009)
Parks, A. L. et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nature Genet. 36, 288–292 (2004)
Hiroi, M., Meunier, N., Marion-Poll, F. & Tanimura, T. Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila. J. Neurobiol. 61, 333–342 (2004)
Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000)
Werner-Reiss, U., Galun, R., Crnjar, R. & Liscia, A. Sensitivity of the mosquito Aedes aegypti (Culicidae) labral apical chemoreceptors to blood plasma components. J. Insect Physiol. 45, 485–491 (1999)
Lindemann, B. Taste reception. Physiol. Rev. 76, 718–766 (1996)
Gilbertson, T. A. Hypoosmotic stimuli activate a chloride conductance in rat taste cells. Chem. Senses 27, 383–394 (2002)
Colbert, H. A., Smith, T. L. & Bargmann, C. I. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J. Neurosci. 17, 8259–8269 (1997)
Muraki, K. et al. TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ. Res. 93, 829–838 (2003)
Liu, L. et al. Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 450, 294–298 (2007)
Hummel, T., Krukkert, K., Roos, J., Davis, G. & Klambt, C. Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron 26, 357–370 (2000)
Hiroi, M., Marion-Poll, F. & Tanimura, T. Differentiated response to sugars among labellar chemosensilla in Drosophila. Zoolog. Sci. 19, 1009–1018 (2002)
Liu, L., Johnson, W. A. & Welsh, M. J. Drosophila DEG/ENaC pickpocket genes are expressed in the tracheal system, where they may be involved in liquid clearance. Proc. Natl Acad. Sci. USA 100, 2128–2133 (2003)
Acknowledgements
We thank K. Vranizan for assistance with microarray analyses. K. Gerhold and D. Bautista provided the TRPV4 construct, protocols and advice for HEK293 experiments; the Roelink laboratory provided tissue culture facilities and advice. G. Agarwaal generated heat map images in Matlab for data presentation. W. Fischler generated the NP1017 G-CaMP data in Supplementary Information. We are grateful to C. Zuker and members of the Scott laboratory for comments on the manuscript. This work was supported by a grant from the NIH (NIDCD), a Burroughs-Wellcome CAREER Award and a John Merck Award to K.S. and a NIH predoctoral fellowship to P.C. K.S. is an HHMI Early Career Scientist.
Author information
Authors and Affiliations
Contributions
P.C. performed most experiments and co-wrote the manuscript. M.H. performed the electrophysiological recordings and the HEK293 heterologous experiments. J.N. provided expertise on the microarray experiments. K.S. co-wrote the manuscript and supervised the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
This file contains Supplementary Figures S1-S6 with legends and Supplementary Table S1. (PDF 8415 kb)
Rights and permissions
About this article
Cite this article
Cameron, P., Hiroi, M., Ngai, J. et al. The molecular basis for water taste in Drosophila. Nature 465, 91–95 (2010). https://doi.org/10.1038/nature09011
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature09011
This article is cited by
-
Alkaline taste sensation through the alkaliphile chloride channel in Drosophila
Nature Metabolism (2023)
-
Molecular sensors in the taste system of Drosophila
Genes & Genomics (2023)
-
Water provisioning increases caged worker bee lifespan and caged worker bees are living half as long as observed 50 years ago
Scientific Reports (2022)
-
Ionotropic receptors mediate nitrogenous waste avoidance in Drosophila melanogaster
Communications Biology (2021)
-
Dopamine modulation of sensory processing and adaptive behavior in flies
Cell and Tissue Research (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.