Letter | Published:

Atom-chip-based generation of entanglement for quantum metrology

Nature volume 464, pages 11701173 (22 April 2010) | Download Citation

Abstract

Atom chips provide a versatile quantum laboratory for experiments with ultracold atomic gases1. They have been used in diverse experiments involving low-dimensional quantum gases2, cavity quantum electrodynamics3, atom–surface interactions4,5, and chip-based atomic clocks6 and interferometers7,8. However, a severe limitation of atom chips is that techniques to control atomic interactions and to generate entanglement have not been experimentally available so far. Such techniques enable chip-based studies of entangled many-body systems and are a key prerequisite for atom chip applications in quantum simulations9, quantum information processing10 and quantum metrology11. Here we report the experimental generation of multi-particle entanglement on an atom chip by controlling elastic collisional interactions with a state-dependent potential12. We use this technique to generate spin-squeezed states of a two-component Bose–Einstein condensate13; such states are a useful resource for quantum metrology. The observed reduction in spin noise of -3.7 ± 0.4 dB, combined with the spin coherence, implies four-partite entanglement between the condensate atoms14; this could be used to improve an interferometric measurement by -2.5 ± 0.6 dB over the standard quantum limit15. Our data show good agreement with a dynamical multi-mode simulation16 and allow us to reconstruct the Wigner function17 of the spin-squeezed condensate. The techniques reported here could be directly applied to chip-based atomic clocks, currently under development18.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

References

  1. 1.

    & Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235–289 (2007)

  2. 2.

    , , , & Non-equilibrium coherence dynamics in one-dimensional Bose gases. Nature 449, 324–327 (2007)

  3. 3.

    et al. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007)

  4. 4.

    , , & Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces. Phys. Rev. Lett. 92, 050404 (2004)

  5. 5.

    et al. Long-range order in electronic transport through disordered metal films. Science 319, 1226–1229 (2008)

  6. 6.

    , , , & Coherence in microchip traps. Phys. Rev. Lett. 92, 203005 (2004)

  7. 7.

    et al. Atom Michelson interferometer on a chip using a Bose-Einstein condensate. Phys. Rev. Lett. 94, 090405 (2005)

  8. 8.

    et al. Matter-wave interferometry in a double well on an atom chip. Nature Phys. 1, 57–62 (2005)

  9. 9.

    Universal quantum simulators. Science 273, 1073–1078 (1996)

  10. 10.

    The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000)

  11. 11.

    , & Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)

  12. 12.

    et al. Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip. Nature Phys. 5, 592–597 (2009)

  13. 13.

    , , & Many-particle entanglement with Bose-Einstein condensates. Nature 409, 63–66 (2001)

  14. 14.

    & Entanglement and extreme spin squeezing. Phys. Rev. Lett. 86, 4431–4434 (2001)

  15. 15.

    , , & Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994)

  16. 16.

    , , & Spin squeezing in a bimodal condensate: spatial dynamics and particle losses. Eur. Phys. J. B 68, 365–381 (2009)

  17. 17.

    On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

  18. 18.

    Magnetically trapped atoms for compact atomic clocks. Appl. Phys. B 95, 227–235 (2009)

  19. 19.

    , , , & Squeezing and entanglement in a Bose-Einstein condensate. Nature 455, 1216–1219 (2008)

  20. 20.

    et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009)

  21. 21.

    , & States of an ensemble of two-level atoms with reduced quantum uncertainty. Phys. Rev. Lett. 104, 073604 (2010)

  22. 22.

    et al. Quantum projection noise in an atomic fountain: a high stability cesium frequency standard. Phys. Rev. Lett. 82, 4619–4622 (1999)

  23. 23.

    et al. Bose-Einstein condensates in microgravity. Appl. Phys. B 84, 663–671 (2006)

  24. 24.

    et al. Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps. Phys. Rev. A 61, 022304 (2000)

  25. 25.

    et al. Microwave potentials and optimal control for robust quantum gates on an atom chip. Phys. Rev. A 74, 022312 (2006)

  26. 26.

    , , , & Theoretical analysis of a realistic atom-chip quantum gate. Phys. Rev. A 74, 012308 (2006)

  27. 27.

    , , & High-fidelity entanglement via molecular dissociation in integrated atom optics. Phys. Rev. A 75, 042312 (2007)

  28. 28.

    & Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993)

  29. 29.

    , & Optimum spin squeezing in Bose-Einstein condensates with particle losses. Phys. Rev. Lett. 100, 210401 (2008)

  30. 30.

    & Quantum beam splitter for atoms. Phys. Rev. A 65, 033613 (2002)

  31. 31.

    , , , & Nonlinear atom interferometer surpasses classical precision limit. Nature 10.1038/nature08919 (this issue)

Download references

Acknowledgements

We thank K. Mølmer, J. Reichel, A. Smerzi and A. Sørensen for discussions and J. Halimeh for reading the manuscript. This work was supported by the Nanosystems Initiative Munich and by the European Community's Seventh Framework Programme under grant agreement no. 247687 (Integrating Project AQUTE). T.W.H. acknowledges support by the Max Planck Foundation.

Author Contributions A.S. and P.T. jointly conceived the study. M.F.R., P.B. and P.T. performed the experiment and analysed the data. Y.L. and A.S. carried out the simulations. All authors discussed the results and contributed to the manuscript.

Author information

Affiliations

  1. Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany

    • Max F. Riedel
    • , Pascal Böhi
    • , Theodor W. Hänsch
    •  & Philipp Treutlein
  2. Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany

    • Max F. Riedel
    • , Pascal Böhi
    • , Theodor W. Hänsch
    •  & Philipp Treutlein
  3. Laboratoire Kastler Brossel, ENS, 24 rue Lhomond, F-75005 Paris, France

    • Yun Li
    •  & Alice Sinatra
  4. State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China

    • Yun Li
  5. Departement Physik, Universität Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

    • Philipp Treutlein

Authors

  1. Search for Max F. Riedel in:

  2. Search for Pascal Böhi in:

  3. Search for Yun Li in:

  4. Search for Theodor W. Hänsch in:

  5. Search for Alice Sinatra in:

  6. Search for Philipp Treutlein in:

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Alice Sinatra or Philipp Treutlein.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This Supplementary Information file comprises: Experimental Setup; Imaging System; Data evaluation; Phase noise; Depth of Entanglement; Wigner Function reconstruction; Using the squeezed state in an atomic clock. It also contains Supplementary Figures 1-8 with legends and Supplementary References.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature08988

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.