Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Substrate-enhanced supercooling in AuSi eutectic droplets

Abstract

The phenomenon of supercooling in metals—that is, the preservation of a disordered, fluid phase in a metastable state well below the melting point1—has led to speculation that local atomic structure configurations of dense, symmetric, but non-periodic packing act as the main barrier for crystal nucleation2,3. For liquids in contact with solids, crystalline surfaces induce layering of the adjacent atoms in the liquid4,5 and may prevent or lower supercooling6. This seed effect is supposed to depend on the local lateral order adopted in the last atomic layers of the liquid in contact with the crystal. Although it has been suggested that there might be a direct coupling between surface-induced lateral order and supercooling6, no experimental observation of such lateral ordering at interfaces is available6. Here we report supercooling in gold-silicon (AuSi) eutectic droplets, enhanced by a Au-induced (6 × 6) reconstruction of the Si(111) substrate. In situ X-ray scattering and ab initio molecular dynamics reveal that pentagonal atomic arrangements of Au atoms at this interface favour a lateral-ordering stabilization process of the liquid phase. This interface-enhanced stabilization of the liquid state shows the importance of the solid–liquid interaction for the structure of the adjacent liquid layers. Such processes are important for present and future technologies, as fluidity and crystallization play a key part in soldering and casting, as well as in processing and controlling chemical reactions for microfluidic devices or during the vapour–liquid–solid growth of semiconductor nanowires.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Extract from the bulk AuSi phase diagram together with representations of the melting and solidification cycles of AuSi islands on an Si(111)-(6 × 6) reconstructed surface.
Figure 2: Reciprocal space mapping of liquid AuSi islands on (6 × 6) reconstructed Si(111).
Figure 3: Evolution of the liquid structure factor during cooling and solidification.
Figure 4: Au-induced Si(111)-(6 × 6) surface leading to enhanced supercooling.

References

  1. 1

    Turnbull, D. Kinetics of solidification of supercooled liquid mercury droplets. J. Chem. Phys. 20, 411–424 (1952)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Frank, F. C. Supercooling of liquids. Proc. R. Soc. Lond. A 215, 43–46 (1952)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Torquato, S. & Jiao, Y. Dense packings of the Platonic and Archimedean solids. Nature 460, 876–879 (2009)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Reichert, H. et al. Observation of five-fold local symmetry in liquid lead. Nature 408, 839–841 (2000)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Oh, S. H., Kauffmann, Y., Scheu, C., Kaplan, W. D. & Rühle, M. Ordered liquid aluminum at the interface with sapphire. Science 310, 661–663 (2005)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Greer, A. L. Liquid metals: supercool order. Nature Mater. 5, 13–14 (2006)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Wochner, P. et al. X-ray cross correlation analysis uncovers hidden local symmetries in disordered matter. Proc. Natl Acad. Sci. USA 106, 11511–11514 (2009)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Icosahedral bond orientational order in supercooled liquids. Phys. Rev. Lett. 47, 1297–1300 (1981)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Schenk, T., Holland-Moritz, D., Simonet, V., Bellissent, R. & Herlach, D. M. Icosahedral short-range order in deeply undercooled metallic melts. Phys. Rev. Lett. 89, 075507 (2002)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Jakse, N. & Pasturel, A. Local order of liquid and supercooled zirconium by ab initio molecular dynamics. Phys. Rev. Lett. 91, 195501 (2003)

    ADS  Article  Google Scholar 

  12. 12

    Wagner, R. S. & Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Hannon, J. B., Kodambaka, S., Ross, F. M. & Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69–71 (2006)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Kim, B. J. et al. Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science 322, 1070–1073 (2008)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Kodambaka, S., Tersoff, J., Reuter, M. C. & Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 316, 729–732 (2007)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Hofmann, S. et al. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nature Mater. 7, 372–375 (2008)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Sutter, E. & Sutter, P. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires. Nano Lett. 8, 411–414 (2008)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Adhikari, H., Marshall, A. F., Chidsey, C. E. D. & McIntyre, P. C. Germanium nanowire epitaxy: shape and orientation control. Nano Lett. 6, 318–323 (2006)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Pinardi, A. L., Leake, S. J., Felici, R. & Robinson, I. K. Formation of an Au-Si eutectic on a clean silicon surface. Phys. Rev. B 79, 045416 (2009)

    ADS  Article  Google Scholar 

  20. 20

    Grozea, D. et al. Direct methods determination of the Si(111)-(6×6)Au surface structure. Surf. Sci. 418, 32–45 (1998)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Shpyrko, O. G. et al. Surface crystallization in a liquid AuSi alloy. Science 313, 77–80 (2006)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Chen, H. S. & Turnbull, D. Thermal properties of gold-silicon binary alloy near the eutectic composition. J. Appl. Phys. 38, 3646–3650 (1967)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Sutter, P. W. & Sutter, E. A. Dispensing and surface-induced crystallization of zeptolitre liquid metal-alloy drops. Nature Mater. 6, 363–366 (2007)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Honeycutt, J. D. & Andersen, H. C. Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950–4963 (1987)

    CAS  Article  Google Scholar 

  25. 25

    Spaepen, F. Structural model for solid-liquid interface in monoatomic systems. Acta Metall. 23, 729–743 (1975)

    CAS  Article  Google Scholar 

  26. 26

    Heni, M. & Lowen, H. Do liquids exhibit local fivefold symmetry at interfaces? Phys. Rev. E 65, 021501 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27

    Vlieg, E. ROD: A program for surface X-ray crystallography. J. Appl. Crystallogr. 33, 401–405 (2000)

    CAS  Article  Google Scholar 

  28. 28

    Schubert, L. et al. Silicon nanowhiskers grown on 111 > Si substrates by molecular-beam epitaxy. Appl. Phys. Lett. 84, 4968–4970 (2004)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Villain, G. Bauer, H. Reichert, Y. Bréchet and K. Oliver for their reading of the manuscript and T. Duffar, K. Zaidat, P. Guyot and P. Desré for discussions.

Author Contributions T.U.S. initiated the work, and contributed to the experimental part; R.D. contributed to both the experimental and theoretical parts; G.R. contributed to the experimental work, A.P. to the theoretical simulations and O.G. to technical assistance. Together with G.R., A.V. analysed the structure of the Si(111)-(6×6) reconstruction. T.U.S., G.R., R.D. and A.P. wrote the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. U. Schülli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures 1-10 with legends and a Supplementary Table. (PDF 1426 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schülli, T., Daudin, R., Renaud, G. et al. Substrate-enhanced supercooling in AuSi eutectic droplets. Nature 464, 1174–1177 (2010). https://doi.org/10.1038/nature08986

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing