Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Modulation of Shigella virulence in response to available oxygen in vivo


Bacteria coordinate expression of virulence determinants in response to localized microenvironments in their hosts. Here we show that Shigella flexneri, which causes dysentery, encounters varying oxygen concentrations in the gastrointestinal tract, which govern activity of its type three secretion system (T3SS). The T3SS is essential for cell invasion and virulence1. In anaerobic environments (for example, the gastrointestinal tract lumen), Shigella is primed for invasion and expresses extended T3SS needles while reducing Ipa (invasion plasmid antigen) effector secretion. This is mediated by FNR (fumarate and nitrate reduction), a regulator of anaerobic metabolism that represses transcription of spa32 and spa33, virulence genes that regulate secretion through the T3SS. We demonstrate there is a zone of relative oxygenation adjacent to the gastrointestinal tract mucosa, caused by diffusion from the capillary network at the tips of villi. This would reverse the anaerobic block of Ipa secretion, allowing T3SS activation at its precise site of action, enhancing invasion and virulence.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influence of anaerobiosis and FNR on Shigella invasion.
Figure 2: T3SS structure and function are modified by ambient O2.
Figure 3: Regulation of Shigella virulence genes by O 2 and FNR.
Figure 4: The presence of O 2 encountered by Shigella in vitro and in vivo


  1. Phalipon, A. & Sansonetti, P. J. Shigellas ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunol. Cell Biol. 85, 119–129 (2007)

    Article  CAS  Google Scholar 

  2. Magdalena, J. et al. Spa32 regulates a switch in substrate specificity of the type III secreton of Shigella flexneri from needle components to Ipa proteins. J. Bacteriol. 184, 3433–3441 (2002)

    Article  CAS  Google Scholar 

  3. Tamano, K., Katayama, E., Toyotome, T. & Sasakawa, C. Shigella Spa32 is an essential secretory protein for functional type III secretion machinery and uniformity of its needle length. J. Bacteriol. 184, 1244–1252 (2002)

    Article  CAS  Google Scholar 

  4. Bahrani, F. K., Sansonetti, P. J. & Parsot, C. Secretion of Ipa proteins by Shigella flexneri: inducer molecules and kinetics of activation. Infect. Immun. 65, 4005–4010 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. West, N. P. et al. Optimization of virulence functions through glucosylation of Shigella LPS. Science 307, 1313–1317 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Sansonetti, P. J. et al. Alterations in the pathogenicity of Escherichia coli K-12 after transfer of plasmid and chromosomal genes from Shigella flexneri . Infect. Immun. 39, 1392–1402 (1983)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kiley, P. J. & Beinert, H. The role of Fe–S proteins in sensing and regulation in bacteria. Curr. Opin. Microbiol. 6, 181–185 (2003)

    Article  CAS  Google Scholar 

  8. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Esteban, M. A. et al. Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res. 66, 3567–3575 (2006)

    Article  CAS  Google Scholar 

  10. Tobe, T. et al. Temperature-regulated expression of invasion genes in Shigella flexneri is controlled through the transcriptional activation of the virB gene on the large plasmid. Mol. Microbiol. 5, 887–893 (1991)

    Article  CAS  Google Scholar 

  11. Schuch, R. & Maurelli, A. T. Spa33, a cell surface-associated subunit of the Mxi-Spa type III secretory pathway of Shigella flexneri, regulates Ipa protein traffic. Infect. Immun. 69, 2180–2189 (2001)

    Article  CAS  Google Scholar 

  12. Hoitink, C. W., Woudt, L. P., Turenhout, J. C., van de Kamp, M. & Canters, G. W. Isolation and sequencing of the Alcaligenes denitrificans azurin-encoding gene: comparison with the genes encoding blue copper proteins from Pseudomonas aeruginosa and Alcaligenes faecalis . Gene 90, 15–20 (1990)

    Article  CAS  Google Scholar 

  13. Melican, K. et al. Bacterial infection-mediated mucosal signalling induces local renal ischaemia as a defence against sepsis. Cell. Microbiol. 10, 1987–1998 (2008)

    Article  CAS  Google Scholar 

  14. Becker, S., Holighaus, G., Gabrielczyk, T. & Unden, G. O2 as the regulatory signal for FNR-dependent gene regulation in Escherichia coli . J. Bacteriol. 178, 4515–4521 (1996)

    Article  CAS  Google Scholar 

  15. Marti, M. A. et al. Dioxygen affinity in heme proteins investigated by computer simulation. J. Inorg. Biochem. 100, 761–770 (2006)

    Article  CAS  Google Scholar 

  16. Hansen, M. C., Palmer, R. J. Jr, Udsen, C., White, D. C. & Molin, S. Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiology 147, 1383–1391 (2001)

    Article  CAS  Google Scholar 

  17. Takahashi, E. et al. In vivo oxygen imaging using green fluorescent protein. Am. J. Physiol. Cell Physiol. 291, C781–C787 (2006)

    Article  CAS  Google Scholar 

  18. Ghisla, S., Hastings, J. W., Favaudon, V. & Lhoste, J.-M. Structure of the oxygen adduct intermediate in the bacterial luciferase reaction: 13C nuclear magnetic resonance determination. Proc. Natl Acad. Sci. USA 75, 5860–5863 (1978)

    Article  ADS  CAS  Google Scholar 

  19. Torres Filho, I. P., Leunig, M., Yuan, F., Intaglietta, M. & Jain, R. K. Non-invasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc. Natl Acad. Sci. USA 91, 2081–2085 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Tamano, K. et al. Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J. 19, 3876–3887 (2000)

    Article  CAS  Google Scholar 

  21. Jaumouillé, V., Francetic, O., Sansonetti, P. J. & Tran Van Nhieu, G. Cytoplasmic targeting of IpaC to the bacterial pole directs polar type III secretion in Shigella . EMBO J. 27, 447–457 (2008)

    Article  Google Scholar 

  22. Pentecost, M., Otto, G., Theriot, J. A. & Amieva, M. R. Listeria monocytogenes invades the epithelial junctions at sites of cell extrusion. PLoS Pathog. 2, e3 (2006)

    Article  Google Scholar 

  23. Exley, R. M. et al. Available carbon source influences the resistance of Neisseria meningitidis against complement. J. Exp. Med. 201, 1637–1645 (2005)

    Article  CAS  Google Scholar 

  24. Podkovyrov, S. M. & Larson, T. J. A new vector-host system for construction of lacZ transcriptional fusions where only low-level gene expression is desirable. Gene 156, 151–152 (1995)

    Article  CAS  Google Scholar 

  25. Sasakawa, C., Komatsu, K., Tobe, T., Suzuki, T. & Yoshikawa, M. Eight genes in region 5 that form an operon are essential for invasion of epithelial cells by Shigella flexneri 2a. J. Bacteriol. 175, 2334–2346 (1993)

    Article  CAS  Google Scholar 

  26. Farinha, M. A. & Kropinski, A. M. Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J. Bacteriol. 172, 3496–3499 (1990)

    Article  CAS  Google Scholar 

  27. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Phalipon, A. et al. Identification and characterization of B-cell epitopes of IpaC, an invasion-associated protein of Shigella flexneri . Infect. Immun. 60, 1919–1926 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ménard, R., Sansonetti, P., Parsot, C. & Vasselon, T. Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri . Cell 79, 515–525 (1994)

    Article  Google Scholar 

  30. Warnecke, C. et al. Activation of the hypoxia-inducible factor-pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors. FASEB J. 17, 1186–1188 (2003)

    Article  CAS  Google Scholar 

  31. Esteban, M. A. et al. Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res. 66, 3567–3575 (2006)

    Article  CAS  Google Scholar 

  32. Darzynkiewicz, Z. et al. Features of apoptotic cells measured by flow cytometry. Cytometry 13, 795–808 (1992)

    Article  CAS  Google Scholar 

  33. Browning, D. F., Beatty, C. M., Wolfe, A. J., Cole, J. A. & Busby, S. J. Independent regulation of the divergent Escherichia coli nrfA and acsP1 promoters by a nucleoprotein assembly at a shared regulatory region. Mol. Microbiol. 43, 687–701 (2002)

    Article  CAS  Google Scholar 

  34. Miller, J. Experiments in Molecular Genetics. (1972)

  35. D’Hauteville, H. et al. Two msbB genes encoding maximal acylation of lipid A are required for invasive Shigella flexneri to mediate inflammatory rupture and destruction of the intestinal epithelium. J. Immunol. 168, 5240–5251 (2002)

    Article  Google Scholar 

  36. Liss, P., Nygren, A., Revsbech, N. P. & Ulfendahl, H. R. Intrarenal oxygen tension measured by a modified Clark electrode at normal and low blood pressure and after injection of x-ray contrast media. Pflugers Arch. 434, 705–711 (1997)

    Article  CAS  Google Scholar 

Download references


This work was supported by the Fondation pour la Recherche Médicale, the Royal Society, an ERC Advanced Grant (HOMEOEPITH), and the European Union (QLRT-1999-00938). Work in CMT’s laboratory is supported by the Wellcome Trust and The Medical Research Council, and PJS is a Howard Hughes Medical Institute scholar. Imaging was performed at the PFID station (Institut Pasteur). We are grateful to J. Green for the anti-FNR pAbs and advice. R. Exley, D. Holden and K. Ray provided suggestions and reviewed the manuscript; we thank M.-A. Nicola for technical help.

Author information

Authors and Affiliations



B.M., N.P.W. and J.M. performed experiments with Shigella. D.F.B. and J.A.C. provided technical support and advice for electrophoretic mobility shift assays and analysis of the fusions. J.G.S. analysed the lipopolysaccharide, M.-C.P. carried out EM, and F.P. performed the oxygen measurements. C.M.T. and P.S. provided advice and overall direction, and wrote the paper.

Corresponding authors

Correspondence to Philippe Sansonetti or Christoph M. Tang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-11 with legends, Supplementary Tables S1-S4 and References. (PDF 1264 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marteyn, B., West, N., Browning, D. et al. Modulation of Shigella virulence in response to available oxygen in vivo. Nature 465, 355–358 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing