Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tracking G-protein-coupled receptor activation using genetically encoded infrared probes


Rhodopsin is a prototypical heptahelical family A G-protein-coupled receptor (GPCR) responsible for dim-light vision1,2. Light isomerizes rhodopsin's retinal chromophore and triggers concerted movements of transmembrane helices, including an outward tilting of helix 6 (H6) and a smaller movement of H5, to create a site for G-protein binding and activation3,4. However, the precise temporal sequence and mechanism underlying these helix rearrangements is unclear. We used site-directed non-natural amino acid mutagenesis to engineer rhodopsin with p-azido-l-phenylalanine residues incorporated at selected sites5, and monitored the azido vibrational signatures using infrared spectroscopy as rhodopsin proceeded along its activation pathway. Here we report significant changes in electrostatic environments of the azido probes even in the inactive photoproduct Meta I, well before the active receptor state was formed. These early changes suggest a significant rotation of H6 and movement of the cytoplasmic part of H5 away from H3. Subsequently, a large outward tilt of H6 leads to opening of the cytoplasmic surface to form the active receptor photoproduct Meta II3. Thus, our results reveal early conformational changes that precede larger rigid-body helix movements, and provide a basis to interpret recent GPCR crystal structures6,7 and to understand conformational sub-states observed during the activation of other GPCRs8.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Sites of azF labelling and electrostatic potential around azF250.
Figure 2: Sequence of photointermediates of V250 6.33azF rhodopsin.
Figure 3: Vibrational shifts of the azido label.
Figure 4: Sequence of helix movements in rhodopsin activation.


  1. Menon, S. T., Han, M. & Sakmar, T. P. Rhodopsin: structural basis of molecular physiology. Physiol. Rev. 81, 1659–1688 (2001)

    CAS  Article  Google Scholar 

  2. Hofmann, K. P. et al. A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem. Sci. 34, 540–552 (2009)

    CAS  Article  Google Scholar 

  3. Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. & Khorana, H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770 (1996)

    ADS  CAS  Article  Google Scholar 

  4. Scheerer, P. et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497–502 (2008)

    ADS  CAS  Article  Google Scholar 

  5. Ye, S., Huber, T., Vogel, R. & Sakmar, T. P. FTIR analysis of GPCR activation using azido probes. Nature Chem. Biol. 5, 397–399 (2009)

    CAS  Article  Google Scholar 

  6. Kobilka, B. K. & Schertler, G. F. X. New G-protein-coupled receptor crystal structures: insights and limitations. Trends Pharmacol. Sci. 29, 79–83 (2008)

    CAS  Article  Google Scholar 

  7. Hanson, M. A. & Stevens, R. C. Discovery of new GPCR biology: one receptor structure at a time. Structure 17, 8–14 (2009)

    CAS  Article  Google Scholar 

  8. Yao, X. et al. Coupling ligand structure to specific conformational switches in the beta2-adrenoceptor. Nature Chem. Biol. 2, 417–422 (2006)

    CAS  Article  Google Scholar 

  9. Sheikh, S. P., Zvyaga, T. A., Lichtarge, O., Sakmar, T. P. & Bourne, H. R. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature 383, 347–350 (1996)

    ADS  CAS  Article  Google Scholar 

  10. Hubbell, W. L., Altenbach, C., Hubbell, C. M. & Khorana, H. G. Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv. Protein Chem. 63, 243–290 (2003)

    CAS  Article  Google Scholar 

  11. Ghanouni, P., Steenhuis, J. J., Farrens, D. L. & Kobilka, B. K. Agonist-induced conformational changes in the G-protein-coupling domain of the β2 adrenergic receptor. Proc. Natl Acad. Sci. USA 98, 5997–6002 (2001)

    ADS  CAS  Article  Google Scholar 

  12. Jensen, A. D. et al. Agonist-induced conformational changes at the cytoplasmic side of transmembrane segment 6 in the β2 adrenergic receptor mapped by site-selective fluorescent labeling. J. Biol. Chem. 276, 9279–9290 (2001)

    CAS  Article  Google Scholar 

  13. Kobilka, B. K. & Deupi, X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 397–406 (2007)

    CAS  Article  Google Scholar 

  14. Ahuja, S. & Smith, S. O. Multiple switches in G protein-coupled receptor activation. Trends Pharmacol. Sci. 30, 494–502 (2009)

    CAS  Article  Google Scholar 

  15. Nygaard, R., Frimurer, T. M., Holst, B., Rosenkilde, M. M. & Schwartz, T. W. Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol. Sci. 30, 249–259 (2009)

    CAS  Article  Google Scholar 

  16. Chin, J. W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003)

    ADS  CAS  Article  Google Scholar 

  17. Bublitz, G. U. & Boxer, S. G. Stark spectroscopy: applications in chemistry, biology, and materials science. Annu. Rev. Phys. Chem. 48, 213–242 (1997)

    ADS  CAS  Article  Google Scholar 

  18. Oh, K. I., Lee, J. H., Joo, C., Han, H. & Cho, M. β-azidoalanine as an IR probe: application to amyloid Aβ(16–22) aggregation. J. Phys. Chem. B 112, 10352–10357 (2008)

    CAS  Article  Google Scholar 

  19. Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three dimensional models and computational probing of structure-function relations in G-protein coupled receptors. Methods Neurosci. 25, 366–428 (1995)

    CAS  Article  Google Scholar 

  20. Knierim, B., Hofmann, K. P., Ernst, O. P. & Hubbell, W. L. Sequence of late molecular events in the activation of rhodopsin. Proc. Natl Acad. Sci. USA 104, 20290–20295 (2007)

    ADS  CAS  Article  Google Scholar 

  21. Li, J., Edwards, P. C., Burghammer, M., Villa, C. & Schertler, G. F. X. Structure of bovine rhodopsin in a trigonal crystal form. J. Mol. Biol. 343, 1409–1438 (2004)

    CAS  Article  Google Scholar 

  22. Ruprecht, J., Mielke, T., Vogel, R., Villa, C. & Schertler, G. F. X. Electron crystallography reveals the structure of metarhodopsin I. EMBO J. 23, 3609–3620 (2004)

    CAS  Article  Google Scholar 

  23. Vogel, R., Siebert, F., Lüdeke, S., Hirshfeld, A. & Sheves, M. Agonists and partial agonists of rhodopsin: retinals with ring modifications. Biochemistry 44, 11684–11699 (2005); erratum Biochemistry 44, 12914 (2005)

    CAS  Article  Google Scholar 

  24. Ballesteros, J. A. et al. Activation of the β2 adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem. 276, 29171–29177 (2001)

    CAS  Article  Google Scholar 

  25. Vogel, R. et al. Functional role of the “ionic lock”–an interhelical hydrogen-bond network in family A heptahelical receptors. J. Mol. Biol. 380, 648–655 (2008)

    CAS  Article  Google Scholar 

  26. Crocker, E. et al. Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin. J. Mol. Biol. 357, 163–172 (2006)

    CAS  Article  Google Scholar 

  27. Deupi, X. & Kobilka, B. K. Activation of G protein-coupled receptors. Adv. Protein Chem. 74, 137–166 (2007)

    CAS  Article  Google Scholar 

  28. Kenakin, T. Collateral efficacy in drug discovery: taking advantage of the good (allosteric) nature of 7TM receptors. Trends Pharmacol. Sci. 28, 407–415 (2007)

    CAS  Article  Google Scholar 

  29. Ye, S. et al. Site-specific incorporation of keto amino acids into functional G protein-coupled receptors using unnatural amino acid mutagenesis. J. Biol. Chem. 283, 1525–1533 (2008)

    CAS  Article  Google Scholar 

  30. Mahalingam, M., Martínez-Mayorga, K., Brown, M. F. & Vogel, R. Two protonation switches control rhodopsin activation in membranes. Proc. Natl Acad. Sci. USA 105, 17795–17800 (2008)

    ADS  CAS  Article  Google Scholar 

  31. Vogel, R. et al. Modulating rhodopsin receptor activation by altering the pKa of the retinal Schiff base. J. Am. Chem. Soc. 128, 10503–10512 (2006)

    CAS  Article  Google Scholar 

  32. Vogel, R. & Siebert, F. Fourier transform infrared spectroscopy study for new insights into molecular properties and activation mechanisms of visual pigment rhodopsin. Biopolymers 72, 133–148 (2003)

    CAS  Article  Google Scholar 

  33. Pieffet, G. & Petukhov, P. A. Parameterization of aromatic azido groups: application as photoaffinity probes in molecular dynamics studies. J. Mol. Model. 15, 1291–1297 (2009)

    CAS  Article  Google Scholar 

  34. Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006)

    ADS  Article  Google Scholar 

  35. Duan, Y. et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24, 1999–2012 (2003)

    CAS  Article  Google Scholar 

  36. Case, D. A. et al. AMBER 10. (Univ. California, San Francisco, 2008)

  37. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001)

    ADS  CAS  Article  Google Scholar 

  38. DeLano, W. L. The PyMOL Molecular Graphics System (DeLano Scientific, Palo Alto, 2002); 〈

  39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  40. Eswar, X. N. et al. in Current Protocols in Bioinformatics (eds Coligan, J. E., Dunn, B. M., Speicher, D. W. & Wingfield, P. T.) 5.6.1–5.6.30 (Supplement 15, Wiley & Sons, 2006)

    Google Scholar 

Download references


This work was supported by DFG grants (Vo 811/4-1 to R.V. and Za 566/2 to E.Z.), a C.H. Li Memorial Scholar Award (to S.Y.), an NIH grant (to T.P.S.), the Ministerio de Educación y Ciencia (Ramon y Cajal Program) and the Instituto de Salud Carlos III (to X.D.).

Author information

Authors and Affiliations



S.Y., T.P.S., X.D. and R.V. designed experiments and wrote the paper, S.Y. expressed and purified mutant pigments, E.Z. and R.V. lipid-reconstituted pigments, performed FTIR experiments and analysed data, and G.C., G.F.X.S. and X.D. developed and analysed structural models. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Thomas P. Sakmar, Xavier Deupi or Reiner Vogel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-2 with legends. (PDF 848 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ye, S., Zaitseva, E., Caltabiano, G. et al. Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature 464, 1386–1389 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing