Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling

Abstract

Schizophrenia is a complex disorder that interferes with the function of several brain systems required for cognition and normal social behaviour. Although the most notable clinical aspects of the disease only become apparent during late adolescence or early adulthood, many lines of evidence suggest that schizophrenia is a neurodevelopmental disorder with a strong genetic component1,2. Several independent studies have identified neuregulin 1 (NRG1) and its receptor ERBB4 as important risk genes for schizophrenia3,4, although their precise role in the disease process remains unknown. Here we show that Nrg1 and ErbB4 signalling controls the development of inhibitory circuitries in the mammalian cerebral cortex by cell-autonomously regulating the connectivity of specific GABA (γ-aminobutyric acid)-containing interneurons. In contrast to the prevalent view, which supports a role for these genes in the formation and function of excitatory synapses between pyramidal cells, we found that ErbB4 expression in the mouse neocortex and hippocampus is largely confined to certain classes of interneurons. In particular, ErbB4 is expressed by many parvalbumin-expressing chandelier and basket cells, where it localizes to axon terminals and postsynaptic densities receiving glutamatergic input. Gain- and loss-of-function experiments, both in vitro and in vivo, demonstrate that ErbB4 cell-autonomously promotes the formation of axo-axonic inhibitory synapses over pyramidal cells, and that this function is probably mediated by Nrg1. In addition, ErbB4 expression in GABA-containing interneurons regulates the formation of excitatory synapses onto the dendrites of these cells. By contrast, ErbB4 is dispensable for excitatory transmission between pyramidal neurons. Altogether, our results indicate that Nrg1 and ErbB4 signalling is required for the wiring of GABA-mediated circuits in the postnatal cortex, providing a new perspective to the involvement of these genes in the aetiology of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ErbB4 is expressed by many interneurons in the postnatal neocortex and hippocampus, but not in pyramidal cells at P30.
Figure 2: Nrg1 promotes GABAergic differentiation and synaptogenesis.
Figure 3: Nrg1 and ErbB4 signalling is necessary for inhibitory synapse formation in vivo.
Figure 4: Conditional deletion of Erbb4 disrupts excitatory input to hippocampal interneurons.

Similar content being viewed by others

References

  1. Lewis, D. A. & Levitt, P. Schizophrenia as a disorder of neurodevelopment. Annu. Rev. Neurosci. 25, 409–432 (2002)

    CAS  PubMed  Google Scholar 

  2. Owen, M. J., Williams, N. M. & O’Donovan, M. C. The molecular genetics of schizophrenia: new findings promise new insights. Mol. Psychiatry 9, 14–27 (2004)

    CAS  PubMed  Google Scholar 

  3. Stefansson, H. et al. Neuregulin 1 and susceptibility to schizophrenia. Am. J. Hum. Genet. 71, 877–892 (2002)

    PubMed  PubMed Central  Google Scholar 

  4. Mei, L. & Xiong, W. C. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nature Rev. Neurosci. 9, 437–452 (2008)

    CAS  Google Scholar 

  5. Addington, A. M. et al. Neuregulin 1 (8p12) and childhood-onset schizophrenia: susceptibility haplotypes for diagnosis and brain developmental trajectories. Mol. Psychiatry 12, 195–205 (2007)

    CAS  PubMed  Google Scholar 

  6. Hall, J. et al. A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nature Neurosci. 9, 1477–1478 (2006)

    CAS  PubMed  Google Scholar 

  7. Barros, C. S. et al. Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proc. Natl Acad. Sci. USA 10.1073/pnas.0900355106 (24 February 2009)

  8. Bjarnadottir, M. et al. Neuregulin1 (NRG1) signaling through Fyn modulates NMDA receptor phosphorylation: differential synaptic function in NRG1+/- knock-outs compared with wild-type mice. J. Neurosci. 27, 4519–4529 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kwon, O. B., Longart, M., Vullhorst, D., Hoffman, D. A. & Buonanno, A. Neuregulin-1 reverses long-term potentiation at CA1 hippocampal synapses. J. Neurosci. 25, 9378–9383 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, B., Woo, R. S., Mei, L. & Malinow, R. The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron 54, 583–597 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Krivosheya, D. et al. ErbB4-neuregulin signaling modulates synapse development and dendritic arborization through distinct mechanisms. J. Biol. Chem. 283, 32944–32956 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Longart, M., Chatani-Hinze, M., Gonzalez, C. M., Vullhorst, D. & Buonanno, A. Regulation of ErbB-4 endocytosis by neuregulin in GABAergic hippocampal interneurons. Brain Res. Bull. 73, 210–219 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Woo, R. S. et al. Neuregulin-1 enhances depolarization-induced GABA release. Neuron 54, 599–610 (2007)

    CAS  PubMed  Google Scholar 

  14. Vullhorst, D. et al. Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus. J. Neurosci. 29, 12255–12264 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nature Rev. Neurosci. 5, 793–807 (2004)

    CAS  Google Scholar 

  17. Tamás, G., Buhl, E. H. & Somogyi, P. Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. J. Physiol. (Lond.) 500, 715–738 (1997)

    PubMed Central  Google Scholar 

  18. Somogyi, P., Freund, T. F. & Cowey, A. The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey. Neuroscience 7, 2577–2607 (1982)

    CAS  PubMed  Google Scholar 

  19. Wonders, C. P. & Anderson, S. A. The origin and specification of cortical interneurons. Nature Rev. Neurosci. 7, 687–696 (2006)

    CAS  Google Scholar 

  20. Gulyás, A. I., Megias, M., Emri, Z. & Freund, T. F. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J. Neurosci. 19, 10082–10097 (1999)

    PubMed  PubMed Central  Google Scholar 

  21. Garcia, R. A., Vasudevan, K. & Buonanno, A. The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc. Natl Acad. Sci. USA 97, 3596–3601 (2000)

    CAS  PubMed  ADS  Google Scholar 

  22. Huang, Y. Z. et al. Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 26, 443–455 (2000)

    CAS  PubMed  Google Scholar 

  23. Lewis, D. A., Hashimoto, T. & Volk, D. W. Cortical inhibitory neurons and schizophrenia. Nature Rev. Neurosci. 6, 312–324 (2005)

    CAS  Google Scholar 

  24. Woo, T. U., Whitehead, R. E., Melchitzky, D. S. & Lewis, D. A. A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc. Natl Acad. Sci. USA 95, 5341–5346 (1998)

    CAS  PubMed  ADS  Google Scholar 

  25. Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Fuchs, E. C. et al. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53, 591–604 (2007)

    CAS  PubMed  Google Scholar 

  27. Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Jensen, O., Kaiser, J. & Lachaux, J. P. Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci. 30, 317–324 (2007)

    CAS  PubMed  Google Scholar 

  29. Spencer, K. M. et al. Abnormal neural synchrony in schizophrenia. J. Neurosci. 23, 7407–7411 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Flames, N. et al. Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron 44, 251–261 (2004)

    CAS  PubMed  Google Scholar 

  31. Stenman, J., Toresson, H. & Campbell, K. J. Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J. Neurosci. 23, 167–174 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Goebbels, S. et al. Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44, 611–621 (2006)

    CAS  PubMed  Google Scholar 

  33. Golub, M. S., Germann, S. L. & Lloyd, K. C. Behavioral characteristics of a nervous system-specific erbB4 knock-out mouse. Behav. Brain Res. 153, 159–170 (2004)

    CAS  PubMed  Google Scholar 

  34. López-Bendito, G. et al. Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb. Cortex 14, 1122–1133 (2004)

    PubMed  Google Scholar 

  35. Gassmann, M. et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378, 390–394 (1995)

    CAS  PubMed  ADS  Google Scholar 

  36. Tidcombe, H. et al. Neural and mammary gland defects in ErbB4 knockout mice genetically rescued from embryonic lethality. Proc. Natl Acad. Sci. USA 100, 8281–8286 (2003)

    CAS  PubMed  ADS  Google Scholar 

  37. Zhu, X., Lai, C., Thomas, S. & Burden, S. J. Neuregulin receptors, erbB3 and erbB4, are localized at neuromuscular synapses. EMBO J. 14, 5842–5848 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tashiro, A., Sandler, V. M., Toni, N., Zhao, C. & Gage, F. H. NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature 442, 929–933 (2006)

    CAS  PubMed  ADS  Google Scholar 

  39. Pla, R., Borrell, V., Flames, N. & Marin, O. Layer acquisition by cortical GABAergic interneurons is independent of Reelin signaling. J. Neurosci. 26, 6924–6934 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Luján, R., Nusser, Z., Roberts, J. D., Shigemoto, R. & Somogyi, P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neurosci. 8, 1488–1500 (1996)

    PubMed  Google Scholar 

  41. Banker, G. A. & Cowan, W. M. Rat hippocampal neurons in dispersed cell culture. Brain Res. 126, 397–425 (1977)

    CAS  PubMed  Google Scholar 

  42. Flames, N. et al. Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron 44, 251–261 (2004)

    CAS  PubMed  Google Scholar 

  43. Christensen, J. K., Paternain, A. V., Selak, S., Ahring, P. K. & Lerma, J. A mosaic of functional kainate receptors in hippocampal interneurons. J. Neurosci. 24, 8986–8993 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Fernández for technical assistance, T. Gil and A. Casillas for general laboratory support, C. Lai for antibodies and plasmids, F. H. Gage for retroviral vectors, and K. Campbell (Dlx5/6-Cre-IRES-GFP), M. Gassmann (HER4heart and Erbb4- ), S. Goebbels and K.-A. Nave (NexCre ), and G. Szabó (GAD65-GFP) for mouse strains. We are grateful to L. Menéndez de la Prida and P. Aivar for help with electrophysiological experiments, M. Maravall for critical reading of the manuscript, and members of the Borrell, Marín and Rico laboratories for stimulating discussions and ideas. This work was supported by grants from Spanish Ministry of Science and Innovation SAF2008-00770 (to O.M.), SAF2007-61904 (to B.R.), BFU2006-07138 (to J.L.), and CONSOLIDER CSD2007-00023 (to J.L., O.M. and B.R.), Consejería de Educación y Ciencia de la Junta de Comunidades de Castilla-La Mancha PAI08-0174-6967 (to R.L.), fundació la Caixa (to B.R.) and the EURYI (see http://www.esf.org/euryi) scheme award (to O.M). P.F. is the recipient of a Marie Curie Intra-European Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

P.F., O.M. and B.R. planned the experiments, and P.F. analysed the results. A.V.P. and J.L. performed the electrophysiological experiments and analysed the results. R.L. performed the ultrastructural analysis. M.V. and R.P. carried out in utero electroporation and in utero viral injections, respectively. K.L., R.L., J.L., O.M. and B.R. provided reagents, materials and analysis tools. P.F., O.M. and B.R. discussed the results and wrote the paper.

Corresponding authors

Correspondence to Oscar Marín or Beatriz Rico.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-17 with legends. (PDF 22510 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazzari, P., Paternain, A., Valiente, M. et al. Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature 464, 1376–1380 (2010). https://doi.org/10.1038/nature08928

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08928

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing