Abstract
Mammalian cells require non-homologous end joining (NHEJ) for the efficient repair of chromosomal DNA double-strand breaks1. A key feature of biological sources of strand breaks is associated nucleotide damage, including base loss (abasic or apurinic/apyrimidinic (AP) sites)2. At single-strand breaks, 5′-terminal abasic sites are excised by the 5′-deoxyribose-5-phosphate (5′-dRP) lyase activity of DNA polymerase β (pol β)3,4,5,6: here we show, in vitro and in cells, that accurate and efficient repair by NHEJ of double-strand breaks with such damage similarly requires 5′-dRP/AP lyase activity. Classically defined NHEJ is moreover uniquely effective at coupling this end-cleaning step to joining in cells, helping to distinguish this pathway from otherwise robust alternative NHEJ pathways. The NHEJ factor Ku can be identified as an effective 5′-dRP/AP lyase. In a similar manner to other lyases7, Ku nicks DNA 3′ of an abasic site by a mechanism involving a Schiff-base covalent intermediate with the abasic site. We show by using cell extracts that Ku is essential for the efficient removal of AP sites near double-strand breaks and, consistent with this result, that joining of such breaks is specifically decreased in cells complemented with a lyase-attenuated Ku mutant. Ku had previously been presumed only to recognize ends and recruit other factors that process ends; our data support an unexpected direct role for Ku in end-processing steps as well.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
USP44 regulates irradiation-induced DNA double-strand break repair and suppresses tumorigenesis in nasopharyngeal carcinoma
Nature Communications Open Access 25 January 2022
-
Compound heterozygous mutations in the noncoding RNU4ATAC cause Roifman Syndrome by disrupting minor intron splicing
Nature Communications Open Access 02 November 2015
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Jeggo, P. A. Studies on mammalian mutants defective in rejoining double-strand breaks in DNA. Mutat. Res. 239, 1–16 (1990)
Ward, J. F. The complexity of DNA damage: relevance to biological consequences. Int. J. Radiat. Biol. 66, 427–432 (1994)
Matsumoto, Y. & Kim, K. Excision of deoxyribose phosphate residues by DNA polymerase β during DNA repair. Science 269, 699–702 (1995)
Prasad, R., Beard, W. A., Strauss, P. R. & Wilson, S. H. Human DNA polymerase β deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism. J. Biol. Chem. 273, 15263–15270 (1998)
Sobol, R. W. et al. The lyase activity of the DNA repair protein β-polymerase protects from DNA-damage-induced cytotoxicity. Nature 405, 807–810 (2000)
Allinson, S. L., Dianova, I. I. & Dianov, G. L. DNA polymerase β is the major dRP lyase involved in repair of oxidative base lesions in DNA by mammalian cell extracts. EMBO J. 20, 6919–6926 (2001)
Piersen, C. E., Prasad, R., Wilson, S. H. & Lloyd, R. S. Evidence for an imino intermediate in the DNA polymerase β deoxyribose phosphate excision reaction. J. Biol. Chem. 271, 17811–17815 (1996)
Pogozelski, W. K. & Tullius, T. D. Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar moiety. Chem. Rev. 98, 1089–1108 (1998)
Ahnstrom, G. & Bryant, P. E. DNA double-strand breaks generated by the repair of X-ray damage in Chinese hamster cells. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 41, 671–676 (1982)
Yang, N., Galick, H. & Wallace, S. S. Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double-strand breaks. DNA Repair (Amst.) 3, 1323–1334 (2004)
Di Noia, J. M. et al. Dependence of antibody gene diversification on uracil excision. J. Exp. Med. 204, 3209–3219 (2007)
Rada, C., Di Noia, J. M. & Neuberger, M. S. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol. Cell 16, 163–171 (2004)
Li, H. et al. Deleting Ku70 is milder than deleting Ku80 in p53-mutant mice and cells. Oncogene 28, 1875–1878 (2009)
Kabotyanski, E. B., Gomelsky, L., Han, J. O., Stamato, T. D. & Roth, D. B. Double-strand break repair in Ku86- and XRCC4-deficient cells. Nucleic Acids Res. 26, 5333–5342 (1998)
Guirouilh-Barbat, J., Rass, E., Plo, I., Bertrand, P. & Lopez, B. S. Defects in XRCC4 and KU80 differentially affect the joining of distal nonhomologous ends. Proc. Natl Acad. Sci. USA 104, 20902–20907 (2007)
McVey, M. & Lee, S. E. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. 24, 529–538 (2008)
Walker, J. R., Corpina, R. A. & Goldberg, J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412, 607–614 (2001)
Bebenek, K., Garcia-Diaz, M., Patishall, S. R. & Kunkel, T. A. Biochemical properties of Saccharomyces cerevisiae DNA polymerase IV. J. Biol. Chem. 280, 20051–20058 (2005)
Prasad, R. et al. Functional analysis of the amino-terminal 8-kDa domain of DNA polymerase β as revealed by site-directed mutagenesis. DNA binding and 5′-deoxyribose phosphate lyase activities. J. Biol. Chem. 273, 11121–11126 (1998)
Stewart, R. D. Two-lesion kinetic model of double-strand break rejoining and cell killing. Radiat. Res. 156, 365–378 (2001)
Longley, M. J., Prasad, R., Srivastava, D. K., Wilson, S. H. & Copeland, W. C. Identification of 5′-deoxyribose phosphate lyase activity in human DNA polymerase gamma and its role in mitochondrial base excision repair in vitro. Proc. Natl Acad. Sci. USA 95, 12244–12248 (1998)
Prasad, R. et al. Human DNA polymerase θ possesses 5′-dRP lyase activity and functions in single-nucleotide base excision repair in vitro. Nucleic Acids Res. 37, 1868–1877 (2009)
Ilina, E. S., Lavrik, O. I. & Khodyreva, S. N. Ku antigen interacts with abasic sites. Biochim. Biophys. Acta 1784, 1777–1785 (2008)
Garcia-Diaz, M., Bebenek, K., Kunkel, T. A. & Blanco, L. Identification of an intrinsic 5′-deoxyribose-5-phosphate lyase activity in human DNA polymerase λ: a possible role in base excision repair. J. Biol. Chem. 276, 34659–34663 (2001)
Daley, J. M. & Wilson, T. E. Evidence that base stacking potential in annealed 3′ overhangs determines polymerase utilization in yeast nonhomologous end joining. DNA Repair (Amst.) 7, 67–76 (2008)
Anderson, C. W. & Lees-Miller, S. P. The nuclear serine/threonine protein kinase DNA-PK. Crit. Rev. Eukaryot. Gene Expr. 2, 283–314 (1992)
Schulte-Uentrop, L., El-Awady, R. A., Schliecker, L., Willers, H. & Dahm-Daphi, J. Distinct roles of XRCC4 and Ku80 in non-homologous end-joining of endonuclease- and ionizing radiation-induced DNA double-strand breaks. Nucleic Acids Res. 36, 2561–2569 (2008)
Nick McElhinny, S. A. et al. A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining. Mol. Cell 19, 357–366 (2005)
Ding, Q. et al. Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair. Mol. Cell. Biol. 23, 5836–5848 (2003)
Davis, B. J., Havener, J. M. & Ramsden, D. A. End-bridging is required for pol μ to efficiently promote repair of noncomplementary ends by nonhomologous end joining. Nucleic Acids Res. 36, 3085–3094 (2008)
Hirt, B. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26, 365–369 (1967)
Acknowledgements
We thank M. Gellert, T. Kunkel, M. Garcia-Diaz, T. Traut, L. Harrison and K. Meek for helpful comments. This work was supported by Public Health Service (PHS) grant CA 84442 and a Leukemia and Lymphoma Society scholar award to D.A.R., and by PHS grants R01 CA76317-05A1 and P01 AG17242 to P.H.
Author Contributions Experiments were designed by S.A.R. and D.A.R. In vitro experiments were performed by S.A.R, N.S., M.D.B. and D.A.R. Mutagenesis and protein purification were performed by S.A.R. and D.A.R. S.A.R., C.S., J.M.H. and M.D.B. performed cellular experiments. P.H. provided Ku70 knockout dermal fibroblasts. S.A.R. and D.A.R. wrote the manuscript with the aid of N.S. and M.D.B.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Figures
This file contains Supplementary Figures 1-7 with legends. (PDF 2466 kb)
Rights and permissions
About this article
Cite this article
Roberts, S., Strande, N., Burkhalter, M. et al. Ku is a 5′-dRP/AP lyase that excises nucleotide damage near broken ends. Nature 464, 1214–1217 (2010). https://doi.org/10.1038/nature08926
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature08926
This article is cited by
-
USP44 regulates irradiation-induced DNA double-strand break repair and suppresses tumorigenesis in nasopharyngeal carcinoma
Nature Communications (2022)
-
Suicide inactivation of the uracil DNA glycosylase UdgX by covalent complex formation
Nature Chemical Biology (2019)
-
Protecting DNA from errors and damage: an overview of DNA repair mechanisms in plants compared to mammals
Cellular and Molecular Life Sciences (2017)
-
Linking DNA polymerase theta structure and function in health and disease
Cellular and Molecular Life Sciences (2016)
-
Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt
Nature Medicine (2015)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.