Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nonlinear atom interferometer surpasses classical precision limit

Abstract

Interference is fundamental to wave dynamics and quantum mechanics. The quantum wave properties of particles are exploited in metrology using atom interferometers, allowing for high-precision inertia measurements1,2. Furthermore, the state-of-the-art time standard is based on an interferometric technique known as Ramsey spectroscopy. However, the precision of an interferometer is limited by classical statistics owing to the finite number of atoms used to deduce the quantity of interest3. Here we show experimentally that the classical precision limit can be surpassed using nonlinear atom interferometry with a Bose–Einstein condensate. Controlled interactions between the atoms lead to non-classical entangled states within the interferometer; this represents an alternative approach to the use of non-classical input states4,5,6,7,8. Extending quantum interferometry9 to the regime of large atom number, we find that phase sensitivity is enhanced by 15 per cent relative to that in an ideal classical measurement. Our nonlinear atomic beam splitter follows the ‘one-axis-twisting’ scheme10 and implements interaction control using a narrow Feshbach resonance. We perform noise tomography of the quantum state within the interferometer and detect coherent spin squeezing with a squeezing factor of -8.2 dB (refs 11–15). The results provide information on the many-particle quantum state, and imply the entanglement of 170 atoms16.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of linear and nonlinear interferometry.
Figure 2: Direct experimental demonstration of precision beyond the standard quantum limit.
Figure 3: Characterization of the quantum state within the nonlinear interferometer.

Similar content being viewed by others

References

  1. Gustavson, T. L., Bouyer, P. & Kasevich, M. A. Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett. 78, 2046–2049 (1997)

    Article  ADS  CAS  Google Scholar 

  2. Fixler, J., Foster, G., McGuirk, J. & Kasevich, M. Atom interferometer measurement of the Newtonian constant of gravity. Science 315, 74–77 (2007)

    Article  ADS  CAS  Google Scholar 

  3. Santarelli, G. et al. Quantum projection noise in an atomic fountain: a high stability cesium frequency standard. Phys. Rev. Lett. 82, 4619–4622 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Hald, J., Sørensen, J. L., Schori, C. & Polzik, E. S. Spin squeezed atoms: a macroscopic entangled ensemble created by light. Phys. Rev. Lett. 83, 1319–1322 (1999)

    Article  ADS  Google Scholar 

  5. Kuzmich, A., Mandel, L. & Bigelow, N. P. Generation of spin squeezing via continuous quantum nondemolition measurement. Phys. Rev. Lett. 85, 1594–1597 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Meyer, V. et al. Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. Phys. Rev. Lett. 86, 5870–5873 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Roos, C. F., Chwalla, M., Kim, K., Riebe, M. & Blatt, R. ‘Designer atoms’ for quantum metrology. Nature 443, 316–319 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993)

    Article  ADS  CAS  Google Scholar 

  11. Wineland, D., Bollinger, J., Itano, W. & Heinzen, D. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994)

    Article  ADS  CAS  Google Scholar 

  12. Sørensen, A., Duan, L., Cirac, J. & Zoller, P. Many-particle entanglement with Bose–Einstein condensates. Nature 409, 63–66 (2001)

    Article  ADS  Google Scholar 

  13. Esteve, J., Gross, C., Weller, A., Giovanazzi, S. & Oberthaler, M. K. Squeezing and entanglement in a Bose–Einstein condensate. Nature 455, 1216–1219 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010)

    Article  ADS  Google Scholar 

  15. Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009)

    Article  ADS  CAS  Google Scholar 

  16. Sørensen, A. & Mølmer, K. Entanglement and extreme spin squeezing. Phys. Rev. Lett. 86, 4431–4434 (2001)

    Article  ADS  Google Scholar 

  17. Cronin, A. D., Schmiedmayer, J. & Pritchard, D. E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051–1129 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Pezzé, L. & Smerzi, A. Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Esteve, J. et al. Observations of density fluctuations in an elongated Bose gas: ideal gas and quasicondensate regimes. Phys. Rev. Lett. 96, 130403 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Widera, A. et al. Entanglement interferometry for precision measurement of atomic scattering properties. Phys. Rev. Lett. 92, 160406 (2004)

    Article  ADS  Google Scholar 

  21. Erhard, M., Schmaljohann, H., Kronjäger, J., Bongs, K. & Sengstock, K. Measurement of a mixed-spin-channel Feshbach resonance in 87Rb. Phys. Rev. A 69, 032705 (2004)

    Article  ADS  Google Scholar 

  22. Kaufman, A. M. et al. Radio-frequency dressing of multiple Feshbach resonances. Phys. Rev. A 80, 050701 (2009)

    Article  ADS  Google Scholar 

  23. Sinatra, A. & Castin, Y. Binary mixtures of Bose-Einstein condensates: phase dynamics and spatial dynamics. Eur. Phys. J. D 8, 319–332 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Li, Y., Treutlein, P., Reichel, J. & Sinatra, A. Spin squeezing in a bimodal condensate: spatial dynamics and particle losses. Eur. Phys. J. B 68, 365–381 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Steel, M. & Collett, M. Quantum state of two trapped Bose-Einstein condensates with a Josephson coupling. Phys. Rev. A 57, 2920–2930 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Fernholz, T. et al. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement. Phys. Rev. Lett. 101, 073601 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Ferrini, G., Spehner, D., Minguzzi, A. & Hekking, F. W. J. Anomalous decoherence rate of macroscopic superpositions in Bose Josephson junctions. Preprint at 〈http://arxiv.org/abs/0911.0655〉 (2009)

  28. Li, Y., Castin, Y. & Sinatra, A. Optimum spin squeezing in Bose-Einstein condensates with particle losses. Phys. Rev. Lett. 100, 210401 (2008)

    Article  ADS  Google Scholar 

  29. Tóth, G., Knapp, C., Gühne, O. & Briegel, H. J. Optimal spin squeezing inequalities detect bound entanglement in spin models. Phys. Rev. Lett. 99, 250405 (2007)

    Article  ADS  Google Scholar 

  30. Reinaudi, G., Lahaye, T., Wang, Z. & Guéry-Odelin, D. Strong saturation absorption imaging of dense clouds of ultracold atoms. Opt. Lett. 32, 3143–3145 (2007)

    Article  ADS  CAS  Google Scholar 

  31. Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 10.1038/nature08988 (this issue); preprint at 〈http://arxiv.org/abs/1003.1651〉 (2010)

Download references

Acknowledgements

We thank J.-P. Ronzheimer for technical assistance throughout the realization of this project and acknowledge discussions with Y. Li and A. Sinatra. We gratefully acknowledge support from the Deutsche Forschungsgemeinschaft, the German-Israeli Foundation, the Heidelberg Center of Quantum Dynamics, the ExtreMe Matter Institute and the European Commission Future and Emerging Technologies Open Scheme project MIDAS (Macroscopic Interference Devices for Atomic and Solid-State Systems). C.G. acknowledges support from the Landesgraduiertenförderung Baden-Württemberg.

Author Contributions All authors contributed extensively to the work presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Oberthaler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Data and Supplementary Figures I-III with legends. (PDF 275 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, C., Zibold, T., Nicklas, E. et al. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010). https://doi.org/10.1038/nature08919

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08919

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing