Spin liquids in frustrated magnets


Frustrated magnets are materials in which localized magnetic moments, or spins, interact through competing exchange interactions that cannot be simultaneously satisfied, giving rise to a large degeneracy of the system ground state. Under certain conditions, this can lead to the formation of fluid-like states of matter, so-called spin liquids, in which the constituent spins are highly correlated but still fluctuate strongly down to a temperature of absolute zero. The fluctuations of the spins in a spin liquid can be classical or quantum and show remarkable collective phenomena such as emergent gauge fields and fractional particle excitations. This exotic behaviour is now being uncovered in the laboratory, providing insight into the properties of spin liquids and challenges to the theoretical description of these materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Frustrated magnetism on 2D and 3D lattices.
Figure 2: Spins, artificial magnetic fields and monopoles in spin ice.
Figure 3: Valence-bond states of frustrated antiferromagnets.
Figure 4: Excitations of quantum antiferromagnets.
Figure 5: Spin–orbital quantum criticality.


  1. 1

    Ramirez, A. P., Broholm, C. L., Cava, R. J. & Kowach, G. R. Geometrical frustration, spin ice and negative thermal expansion — the physics of underconstraint. Physica B 280, 290–295 (2000).

    ADS  CAS  Google Scholar 

  2. 2

    Kléman, M., Lavrentovich, O. D. & Friedel, J. Soft Matter Physics: An Introduction (Springer, 2003).

    Google Scholar 

  3. 3

    Wannier, G. H. Antiferromagnetism. The triangular Ising net. Phys. Rev. 79, 357–364 (1950).

    ADS  MathSciNet  MATH  Google Scholar 

  4. 4

    Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001). This is an excellent review of the physics of spin ice that was published before the recent work on Coulomb correlations and monopoles.

    ADS  CAS  PubMed  Google Scholar 

  6. 6

    Gingras, M. J. P. in Highly Frustrated Magnetism (eds Lacroix, C., Mendels, P. & Mila, F.) (Springer, in the press); preprint at <http://arXiv.org/abs/0903.2772> (2009).

    Google Scholar 

  7. 7

    Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7 . Phys. Rev. Lett. 79, 2554–2557 (1997).

    ADS  CAS  Google Scholar 

  8. 8

    Isakov, S. V., Moessner, R. & Sondhi, S. L. Why spin ice obeys the ice rules. Phys. Rev. Lett. 95, 217201 (2005).

    ADS  CAS  PubMed  Google Scholar 

  9. 9

    den Hertog, B. C. & Gingras, M. J. P. Dipolar interactions and origin of spin ice in Ising pyrochlore magnets. Phys. Rev. Lett. 84, 3430–3433 (2000).

    ADS  CAS  PubMed  Google Scholar 

  10. 10

    Ramirez, A. P., Hayashi, A., Cava, R. J., Siddharthan, R. & Shastry, B. S. Zero-point entropy in 'spin ice'. Nature 399, 333–334 (1999).

    ADS  CAS  Google Scholar 

  11. 11

    Pauling, L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935).

    CAS  Google Scholar 

  12. 12

    Youngblood, R., Axe, J. D. & McCoy, B. M. Correlations in ice-rule ferroelectrics. Phys. Rev. B 21, 5212–5220 (1980).

    ADS  CAS  Google Scholar 

  13. 13

    Isakov, S. V., Gregor, K., Moessner, R. & Sondhi, S. L. Dipolar spin correlations in classical pyrochlore magnets. Phys. Rev. Lett. 93, 167204 (2004).

    ADS  CAS  PubMed  Google Scholar 

  14. 14

    Henley, C. L. Power-law spin correlations in pyrochlore antiferromagnets. Phys. Rev. B 71, 014424 (2005).

    ADS  Google Scholar 

  15. 15

    Fennell, T. et al. Experimental proof of a magnetic Coulomb phase. Preprint at <http://arXiv.org/abs/0907.0954> (2009).

    Google Scholar 

  16. 16

    Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008). This theoretical paper proposed that magnetic monopoles are present in spin ice.

    ADS  CAS  PubMed  Google Scholar 

  17. 17

    Jaubert, L. D. C. & Holdsworth, P. C. W. Signature of magnetic monopole and Dirac string dynamics in spin ice. Nature Phys. 5, 258–261 (2009). This paper shows how the density and dynamics of magnetic monopoles can be inferred from the experimental magnetization relaxation rate in spin ice.

    ADS  CAS  Google Scholar 

  18. 18

    Onsager, L. Deviations from Ohm's law in weak electrolytes. J. Chem. Phys. 2, 599–615 (1934).

    ADS  CAS  Google Scholar 

  19. 19

    Bramwell, S. T. et al. Measurement of the charge and current of magnetic monopoles in spin ice. Nature 461, 956–959 (2009). This paper extracts an experimental value for the charge of a magnetic monopole in spin ice, on the basis of an analogy of the monopole plasma to a classical electrolyte.

    ADS  CAS  PubMed  Google Scholar 

  20. 20

    Morris, D. J. P. et al. Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7 . Science 326, 411–414 (2009).

    ADS  CAS  PubMed  Google Scholar 

  21. 21

    Kadowaki, H. et al. Observation of magnetic monopoles in spin ice. J. Phys. Soc. Jpn 78, 103706 (2009).

    ADS  Google Scholar 

  22. 22

    Anderson, P. W. Resonating valence bonds: a new kind of insulator. Mater. Res. Bull. 8, 153–160 (1973). This paper proposed the RVB wavefunction for a QSL state.

    CAS  Google Scholar 

  23. 23

    Iwase, H., Isobe, M., Ueda, Y. & Yasuoka, H. Observation of spin gap in CaV2O5 by NMR. J. Phys. Soc. Jpn 65, 2397–2400 (1996).

    ADS  CAS  Google Scholar 

  24. 24

    Azuma, M., Hiroi, Z., Takano, M., Ishida, K. & Kitaoka, Y. Observation of a spin gap in SrCu2O3 comprising spin-½ quasi-1D two-leg ladders. Phys. Rev. Lett. 73, 3463–3466 (1994).

    ADS  CAS  PubMed  Google Scholar 

  25. 25

    Kageyama, H. et al. Exact dimer ground state and quantized magnetization plateaus in the two-dimensional spin system SrCu2(BO3)2 . Phys. Rev. Lett. 82, 3168–3171 (1999).

    ADS  CAS  Google Scholar 

  26. 26

    Nikuni, T., Oshikawa, M., Oosawa, A. & Tanaka, H. Bose–Einstein condensation of dilute magnons in TlCuCl3 . Phys. Rev. Lett. 84, 5868–5871 (2000).

    ADS  CAS  PubMed  Google Scholar 

  27. 27

    Moessner, R. & Sondhi, S. L. Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881–1884 (2001).

    ADS  CAS  PubMed  Google Scholar 

  28. 28

    Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. (Leipz.) 321, 2–111 (2006).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  29. 29

    Motrunich, O. I. & Senthil, T. Exotic order in simple models of bosonic systems. Phys. Rev. Lett. 89, 277004 (2002).

    ADS  CAS  PubMed  Google Scholar 

  30. 30

    Balents, L., Fisher, M. P. A. & Girvin, S. M. Fractionalization in an easy-axis kagomé antiferromagnet. Phys. Rev. B 65, 224412 (2002).

    ADS  Google Scholar 

  31. 31

    Hermele, M., Fisher, M. P. A. & Balents, L. Pyrochlore photons: the U(1) spin liquid in a S = ½ three-dimensional frustrated magnet. Phys. Rev. B 69, 064404 (2004).

    ADS  Google Scholar 

  32. 32

    Levin, M. A. & Wen, X. G. String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005).

    ADS  Google Scholar 

  33. 33

    Liang, S., Doucot, B. & Anderson, P. W. Some new variational resonating-valence-bond-type wave functions for the spin-½ antiferromagnetic Heisenberg model on a square lattice. Phys. Rev. Lett. 61, 365–368 (1988).

    ADS  CAS  PubMed  Google Scholar 

  34. 34

    Alet, F., Walczak, A. M. & Fisher, M. P. A. Exotic quantum phases and phase transitions in correlated matter. Physica A 369, 122–142 (2006).

    ADS  Google Scholar 

  35. 35

    Wen, X. G. Quantum orders and symmetric spin liquids. Phys. Rev. B 65, 165113 (2002).

    ADS  Google Scholar 

  36. 36

    Read, N. & Sachdev, S. Large-N expansion for frustrated quantum antiferromagnets. Phys. Rev. Lett. 66, 1773–1776 (1991).

    ADS  CAS  PubMed  Google Scholar 

  37. 37

    Affleck, I. & Marston, J. B. Large-n limit of the Heisenberg–Hubbard model: implications for high-T c superconductors. Phys. Rev. B 37, 3774–3777 (1988).

    ADS  CAS  Google Scholar 

  38. 38

    Rantner, W. & Wen, X.-G. Electron spectral function and algebraic spin liquid for the normal state of underdoped high T c superconductors. Phys. Rev. Lett. 86, 3871–3874 (2001).

    ADS  CAS  PubMed  Google Scholar 

  39. 39

    Lee, P. A. An end to the drought of quantum spin liquids. Science 321, 1306–1307 (2008).

    CAS  PubMed  Google Scholar 

  40. 40

    Ramirez, A. P. Quantum spin liquids: a flood or a trickle? Nature Phys. 4, 442–443 (2008).

    ADS  CAS  Google Scholar 

  41. 41

    Olariu, A. et al. 17O NMR study of the intrinsic magnetic susceptibility and spin dynamics of the quantum kagomé antiferromagnet ZnCu3(OH)6Cl2 . Phys. Rev. Lett. 100, 087202 (2008).

    ADS  CAS  PubMed  Google Scholar 

  42. 42

    Yoshida, H. et al. Magnetization 'steps' on a kagomé lattice in volborthite. J. Phys. Soc. Jpn 78, 043704 (2009).

    ADS  Google Scholar 

  43. 43

    Kurosaki, Y., Shimizu, Y., Miyagawa, K., Kanoda, K. & Saito, G. Mott transition from a spin liquid to a Fermi liquid in the spin-frustrated organic conductor κ-(ET)2Cu2(CN)3 . Phys. Rev. Lett. 95, 177001 (2005).

    ADS  CAS  PubMed  Google Scholar 

  44. 44

    Shimizu, Y., Akimoto, H., Tsujii, H., Tajima, A. & Kato, R. Mott transition in a valence-bond solid insulator with a triangular lattice. Phys. Rev. Lett. 99, 256403 (2007).

    ADS  CAS  PubMed  Google Scholar 

  45. 45

    Kézsmárki, I. et al. Depressed charge gap in the triangular-lattice Mott insulator κ-(ET)2Cu2(CN)3 . Phys. Rev. B 74, 201101 (2006).

    ADS  Google Scholar 

  46. 46

    Okamoto, Y., Nohara, M., Aruga-Katori, H. & Takagi, H. Spin-liquid state in the S = ½ hyperkagomé antiferromagnet Na4Ir3O8 . Phys. Rev. Lett. 99, 137207 (2007).

    ADS  PubMed  Google Scholar 

  47. 47

    Okamoto, Y., Yoshida, H. & Hiroi, Z. Vesignieite BaCu3V2O8(OH)2 as a candidate spin-½ kagomé antiferromagnet. J. Phys. Soc. Jpn 78, 033701 (2009).

    ADS  Google Scholar 

  48. 48

    Hiroi, Z. et al. Spin-½ kagomé-like lattice in volborthite, Cu3V2O7(OH)2·2H2O. J. Phys. Soc. Jpn 70, 3377–3384 (2001).

    ADS  CAS  Google Scholar 

  49. 49

    Helton, J. S. et al. Spin dynamics of the spin-½ kagomé lattice antiferromagnet ZnCu3(OH)6Cl2 . Phys. Rev. Lett. 98, 107204 (2007).

    ADS  CAS  PubMed  Google Scholar 

  50. 50

    Ramirez, A. P. Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 24, 453–480 (1994). This review helped to define the field of highly frustrated magnets and is an excellent discussion of the state of the science at the time.

    ADS  CAS  Google Scholar 

  51. 51

    Yamashita, S. et al. Thermodynamic properties of a spin-½ spin-liquid state in a κ-type organic salt. Nature Phys. 4, 459–462 (2008).

    ADS  CAS  Google Scholar 

  52. 52

    Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).

    ADS  CAS  PubMed  Google Scholar 

  53. 53

    Itou, T., Oyamada, A., Maegawa, S., Tamura, M. & Kato, R. Quantum spin liquid in the spin-½ triangular antiferromagnet EtMe3Sb[Pd(dmit)2]2 . Phys. Rev. B 77, 104413 (2008).

    ADS  Google Scholar 

  54. 54

    Itou, T., Oyamada, A., Maegawa, S., Tamura, M. & Kato, R. Spin-liquid state in an organic spin-½ system on a triangular lattice, EtMe3Sb[Pd(dmit)2]2 . J. Phys. Condens. Matter 19, 145247 (2007).

    ADS  Google Scholar 

  55. 55

    Mendels, P. et al. Quantum magnetism in the paratacamite family: towards an ideal kagomé lattice. Phys. Rev. Lett. 98, 077204 (2007).

    ADS  CAS  PubMed  Google Scholar 

  56. 56

    Yoshida, M., Takigawa, M., Yoshida, H., Okamoto, Y. & Hiroi, Z. Phase diagram and spin dynamics in volborthite with a distorted kagomé lattice. Phys. Rev. Lett. 103, 077207 (2009).

    ADS  CAS  PubMed  Google Scholar 

  57. 57

    Koretsune, T., Motome, Y. & Furusaki, A. Exact diagonalization study of Mott transition in the Hubbard model on an anisotropic triangular lattice. J. Phys. Soc. Jpn 76, 074719 (2007).

    ADS  Google Scholar 

  58. 58

    Kyung, B. & Tremblay, A. M. S. Mott transition, antiferromagnetism, and d-wave superconductivity in two-dimensional organic conductors. Phys. Rev. Lett. 97, 046402 (2006).

    ADS  CAS  PubMed  Google Scholar 

  59. 59

    Morita, H., Watanabe, S. & Imada, M. Nonmagnetic insulating states near the Mott transitions on lattices with geometrical frustration and implications for κ-(ET)2Cu2(CN)3 . J. Phys. Soc. Jpn 71, 2109–2112 (2002).

    Google Scholar 

  60. 60

    Lecheminant, P., Bernu, B., Lhuillier, C., Pierre, L. & Sindzingre, P. Order versus disorder in the quantum Heisenberg antiferromagnet on the kagomé lattice using exact spectra analysis. Phys. Rev. B 56, 2521–2529 (1997).

    ADS  CAS  Google Scholar 

  61. 61

    Marston, J. B. & Zeng, C. Spin-Peierls and spin-liquid phases of kagomé quantum antiferromagnets. J. Appl. Phys. 69, 5962 (1991).

    ADS  Google Scholar 

  62. 62

    Singh, R. R. P. & Huse, D. A. Ground state of the spin-½ kagomé lattice Heisenberg antiferromagnet. Phys. Rev. B 76, 180407 (2007).

    ADS  Google Scholar 

  63. 63

    Cépas, O., Fong, C. M., Leung, P. W. & Lhuillier, C. Quantum phase transition induced by Dzyaloshinskii–Moriya interactions in the kagomé antiferromagnet. Phys. Rev. B 78, 140405 (2008).

    ADS  Google Scholar 

  64. 64

    Chen, G. & Balents, L. Spin–orbit effects in Na4Ir3O8: a hyperkagomé lattice antiferromagnet. Phys. Rev. B 78, 094403 (2008).

    ADS  Google Scholar 

  65. 65

    Motrunich, O. I. Variational study of triangular lattice spin-½ model with ring exchanges and spin liquid state in κ-(ET)2Cu2(CN)3 . Phys. Rev. B 72, 045105 (2005).

    ADS  Google Scholar 

  66. 66

    Lee, S.-S. & Lee, P. A. U(1) gauge theory of the Hubbard model: spin liquid states and possible application to κ-(BEDT-TTF)2Cu2(CN)3 . Phys. Rev. Lett. 95, 036403 (2005).

    ADS  PubMed  Google Scholar 

  67. 67

    Ran, Y., Hermele, M., Lee, P. A. & Wen, X. G. Projected-wave-function study of the spin-½ Heisenberg model on the kagomé lattice. Phys. Rev. Lett. 98, 117205 (2007).

    ADS  PubMed  Google Scholar 

  68. 68

    Lawler, M. J., Paramekanti, A., Kim, Y. B. & Balents, L. Gapless spin liquids on the three-dimensional hyperkagomé lattice of Na4Ir3O8 . Phys. Rev. Lett. 101, 197202 (2008).

    ADS  PubMed  Google Scholar 

  69. 69

    Coldea, R., Tennant, D. A. & Tylczynski, Z. Extended scattering continua characteristic of spin fractionalization in the two-dimensional frustrated quantum magnet Cs2CuCl4 observed by neutron scattering. Phys. Rev. B 68, 134424 (2003).

    ADS  Google Scholar 

  70. 70

    Coldea, R., Tennant, D. A., Tsvelik, A. M. & Tylczynski, Z. Experimental realization of a 2D fractional quantum spin liquid. Phys. Rev. Lett. 86, 1335–1338 (2001).

    ADS  CAS  PubMed  Google Scholar 

  71. 71

    Lake, B., Tennant, D. A., Frost, C. D. & Nagler, S. E. Quantum criticality and universal scaling of a quantum antiferromagnet. Nature Mater. 4, 329–334 (2005).

    ADS  CAS  Google Scholar 

  72. 72

    Bocquet, M., Essler, F. H. L., Tsvelik, A. M. & Gogolin, A. O. Finite-temperature dynamical magnetic susceptibility of quasi-one-dimensional frustrated spin-½ Heisenberg antiferromagnets. Phys. Rev. B 64, 094425 (2001).

    ADS  Google Scholar 

  73. 73

    Starykh, O. A. & Balents, L. Ordering in spatially anisotropic triangular antiferromagnets. Phys. Rev. Lett. 98, 077205 (2007).

    ADS  PubMed  Google Scholar 

  74. 74

    Kohno, M., Starykh, O. A. & Balents, L. Spinons and triplons in spatially anisotropic frustrated antiferromagnets. Nature Phys. 3, 790–795 (2007). This theoretical paper shows how a model of interacting 1D spinons can quantitatively explain inelastic neutron scattering in Cs 2 CuCl 4.

    ADS  CAS  Google Scholar 

  75. 75

    Fortune, N. A. et al. Cascade of magnetic-field-induced quantum phase transitions in a spin-½ triangular-lattice antiferromagnet. Phys. Rev. Lett. 102, 257201 (2009).

    ADS  CAS  PubMed  Google Scholar 

  76. 76

    Khomskii, D. I. Role of orbitals in the physics of correlated electron systems. Phys. Scr. 72, CC8–CC14 (2005).

    CAS  Google Scholar 

  77. 77

    Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    ADS  CAS  PubMed  Google Scholar 

  78. 78

    Ishihara, S., Yamanaka, M. & Nagaosa, N. Orbital liquid in perovskite transition-metal oxides. Phys. Rev. B 56, 686–692 (1997).

    ADS  CAS  Google Scholar 

  79. 79

    Feiner, L. F., Olés, A. M. & Zaanen, J. Quantum melting of magnetic order due to orbital fluctuations. Phys. Rev. Lett. 78, 2799–2802 (1997).

    ADS  CAS  Google Scholar 

  80. 80

    Khaliullin, G. & Maekawa, S. Orbital liquid in three-dimensional Mott insulator: LaTiO3 . Phys. Rev. Lett. 85, 3950–3953 (2000).

    ADS  CAS  PubMed  Google Scholar 

  81. 81

    Büttgen, N., Zymara, A., Kegler, C., Tsurkan, V. & Loidl, A. Spin and orbital frustration in FeSc2S4 probed by 45Sc NMR. Phys. Rev. B 73, 132409 (2006).

    ADS  Google Scholar 

  82. 82

    Krimmel, A. et al. Vibronic and magnetic excitations in the spin–orbital liquid state of FeSc2S4 . Phys. Rev. Lett. 94, 237402 (2005).

    ADS  CAS  PubMed  Google Scholar 

  83. 83

    Fritsch, V. et al. Spin and orbital frustration in MnSc2S4 and FeSc2S4 . Phys. Rev. Lett. 92, 116401 (2004).

    ADS  CAS  PubMed  Google Scholar 

  84. 84

    Chen, G., Balents, L. & Schnyder, A. P. A. Spin–orbital singlet and quantum critical point on the diamond lattice: FeSc2S4 . Phys. Rev. Lett. 102, 096406 (2009).

    ADS  PubMed  Google Scholar 

  85. 85

    Powell, S. & Chalker, J. T. Classical to quantum mappings for geometrically frustrated systems: spin-ice in a [100] field. Phys. Rev. B 78, 024422 (2008).

    ADS  Google Scholar 

  86. 86

    Saunders, T. E. & Chalker, J. T. Structural phase transitions in geometrically frustrated antiferromagnets. Phys. Rev. B 77, 214438 (2008).

    ADS  Google Scholar 

  87. 87

    Bergman, D. L., Fiete, G. A. & Balents, L. Ordering in a frustrated pyrochlore antiferromagnet proximate to a spin liquid. Phys. Rev. B 73, 134402 (2006).

    ADS  Google Scholar 

  88. 88

    Lee, S. H. et al. Emergent excitations in a geometrically frustrated magnet. Nature 418, 856–858 (2002).

    ADS  CAS  PubMed  Google Scholar 

  89. 89

    Tristan, N. et al. Geometric frustration in the cubic spinels MAl2O4 (M = Co, Fe, and Mn). Phys. Rev. B 72, 174404 (2005).

    ADS  Google Scholar 

  90. 90

    Bergman, D., Alicea, J., Gull, E., Trebst, S. & Balents, L. Order by disorder and spiral spin liquid in frustrated diamond lattice antiferromagnets. Nature Phys. 3, 487–491 (2007).

    ADS  CAS  Google Scholar 

  91. 91

    Gardner, J. S. et al. Cooperative paramagnetism in the geometrically frustrated pyrochlore antiferromagnet Tb2Ti2O7 . Phys. Rev. Lett. 82, 1012–1015 (1999).

    ADS  CAS  Google Scholar 

  92. 92

    Nakatsuji, S. et al. Metallic spin-liquid behavior of the geometrically frustrated Kondo lattice. Phys. Rev. Lett. 96, 087204 (2006).

    ADS  CAS  PubMed  Google Scholar 

  93. 93

    Senthil, T. & Fisher, M. P. A. Fractionalization in the cuprates: detecting the topological order. Phys. Rev. Lett. 86, 292–295 (2001).

    ADS  CAS  PubMed  Google Scholar 

  94. 94

    Wynn, J. C. et al. Limits on spin–charge separation from h/2e fluxoids in very underdoped YBa2Cu3O6+ x . Phys. Rev. Lett. 87, 197002 (2001).

    ADS  CAS  PubMed  Google Scholar 

  95. 95

    Norman, M. R. & Micklitz, T. How to measure a spinon Fermi surface. Phys. Rev. Lett. 102, 067204 (2009).

    ADS  CAS  PubMed  Google Scholar 

  96. 96

    Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006). The main subject of this paper is superconductivity, but it provides a good summary of the status of the theory of QSL states.

    ADS  CAS  Google Scholar 

  97. 97

    Wawrzyńska, E. et al. Orbital degeneracy removed by charge order in triangular antiferromagnet AgNiO2 . Phys. Rev. Lett. 99, 157204 (2007).

    ADS  PubMed  Google Scholar 

  98. 98

    Podolsky, D., Paramekanti, A., Kim, Y. B. & Senthil, T. Mott transition between a spin-liquid insulator and a metal in three dimensions. Phys. Rev. Lett. 102, 186401 (2009).

    ADS  PubMed  Google Scholar 

  99. 99

    Senthil, T. Theory of a continuous Mott transition in two dimensions. Phys. Rev. B 78, 045109 (2008).

    ADS  Google Scholar 

  100. 100

    Smith, D. F. et al. Dzialoshinskii–Moriya interaction in the organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Phys. Rev. B 68, 024512 (2003).

    ADS  Google Scholar 

  101. 101

    Pesin, D. A. & Balents, L. Mott physics and band topology in materials with strong spin–orbit interaction. Preprint at <http://arxiv.org/abs/0907.2962> (2009).

Download references


I am grateful to countless friends and collaborators, especially O. Starykh and M. Fisher for many stimulating interactions. I would also like to thank R. Coldea, H. Takagi, A. Loidl and P. Mendels for sharing their insights into experiments on frustrated magnets. My research is supported by the US National Science Foundation, the US Department of Energy, the David and Lucile Packard Foundation and the US Army Research Office.

Author information



Ethics declarations

Competing interests

The author declares no competing financial interest

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints. Correspondence should be addressed to the author (balents@kitp.ucsb.edu).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010). https://doi.org/10.1038/nature08917

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.