Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The enigma of supersolidity

Abstract

A 'supersolid' is a quantum solid in which a fraction of the mass is superfluid. As a remarkable consequence, it is rigid, but part of its mass is able to flow owing to quantum physical processes. This paradoxical state of matter was considered as a theoretical possibility as early as 1969, but its existence was discovered only in 2004, in 4He. Since then, intense experimental and theoretical efforts have been made to explain the origins of this exotic state of matter. It now seems that its physical interpretation is more complicated than originally thought.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Quantum tunnelling of vacancies.
Figure 2: First experimental evidence of supersolidity in 4He.
Figure 3: Various defects in solids.
Figure 4: Stiffness measurements and the role of 3He impurities.
Figure 5: Dislocation lines.

References

  1. 1

    Leggett, A. J. A 'superglass' state in solid 4-He. J. Club Condens. Matter Phys. <http://www.condmatjournalclub.org/wp-content/uploads/2009/04/jccm_april09_032.pdf> (2009).

  2. 2

    Kim, E. & Chan, M. H. W. Probable observation of a supersolid helium phase. Nature 427, 225–227 (2004). This paper reported the first observation of anomalous rotation properties in solid 4He.

    ADS  CAS  Article  Google Scholar 

  3. 3

    Kim, E. & Chan, M. H. W. Observation of superflow in solid helium. Science 305, 1941–1944 (2004).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Rittner, A. S. & Reppy, J. Observation of classical rotational inertia and nonclassical supersolid signals in solid 4He below 250 mK. Phys. Rev. Lett. 97, 165301 (2006).

    ADS  Article  Google Scholar 

  5. 5

    Rittner, A. S. & Reppy, J. Disorder and the supersolid state of solid 4He. Phys. Rev. Lett. 98, 175302 (2007).

    ADS  Article  Google Scholar 

  6. 6

    Kondo, M., Takada, S., Shibayama, Y. & Shirahama, K. Observation of non-classical rotational inertia in bulk solid 4He. J. Low Temp. Phys. 148, 695–699 (2007).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Aoki, Y., Graves, J. C. & Kojima, H. Oscillation frequency dependence of non-classical rotation inertia of solid 4He. Phys. Rev. Lett. 99, 015301 (2007).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Penzev, A. Yasuta, Y. & Kubota, M. AC vortex-dependent torsional oscillation response and onset temperature T 0 in solid 4He. Phys. Rev. Lett. 101, 065301 (2008).

    ADS  Article  Google Scholar 

  9. 9

    Hunt, B. et al. Evidence for a superglass state in solid 4He. Science 324, 632–636 (2009).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Day, J. & Beamish, J. Low-temperature shear modulus changes in solid 4He and connection to supersolidity. Nature 450, 853–856 (2007). The paper reported the first observation of a stiffening linked to the appearance of supersolidity.

    ADS  CAS  Article  Google Scholar 

  11. 11

    Day, J., Syshchenko, O. & Beamish, J. D. Intrinsic and dislocation-induced elastic behavior of solid helium. Phys. Rev. B 79, 214524 (2009).

    ADS  Article  Google Scholar 

  12. 12

    Mukharsky, Yu., Penzev, A. & Varoquaux, E. Low-frequency acoustics in solid 4He at low temperature. Phys. Rev. B 80, 140504 (2009).

    ADS  Article  Google Scholar 

  13. 13

    Rojas, X., Pantalei, C., Maris, H. J. & Balibar, S. Acoustic properties of solid 4He in the limit of zero impurity. J. Low Temp. Phys. 158, 478–484 (2009).

    ADS  Article  Google Scholar 

  14. 14

    Lin, X., Clark, A. C. & Chan, M. H. W. Heat capacity signature of the supersolid transition. Nature 449, 1025–1028 (2007).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Lin, X., Clark, A. C., Cheng, Z. G. & Chan, M. H. W. Heat capacity peak in solid 4He: effects of disorder and 3He impurities. Phys. Rev. Lett. 102, 125302 (2009). This paper presents the most recent measurements of a heat capacity peak signalling that the supersolid transition is a true phase transition.

    ADS  CAS  Article  Google Scholar 

  16. 16

    Prokof'ev, N. What makes a crystal supersolid? Adv. Phys. 56, 381–402 (2007). This is a recent review on the theory of supersolidity, including results from numerical simulations.

    ADS  CAS  Article  Google Scholar 

  17. 17

    Ceperley, D. M. & Bernu, B. Ring exchanges and the supersolid phase of 4He. Phys. Rev. Lett. 93, 155303 (2004).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Anderson, P. W. Two new vortex liquids. Nature Phys. 3, 160–162 (2007).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Anderson, P. W. Bose fluids above T c: incompressible vortex fluids and 'supersolidity'. Phys. Rev. Lett. 100, 215301 (2008). In this paper, Anderson argues that supersolidity is an intrinsic property of quantum crystals that exists even in the absence of disorder.

    ADS  CAS  Article  Google Scholar 

  20. 20

    Anderson, P. W. A. Gross–Pitaevskii treatment for supersolid helium. Science 324, 631–632 (2009).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Balibar, S. & Caupin, F. Supersolidity and disorder. J. Phys. Condens. Matter 20, 173201 (2008). This is a recent review on the whole field of supersolidity, with emphasis on experimental results.

    ADS  Article  Google Scholar 

  22. 22

    Galli, D. E. & Reatto, L. Solid 4He and the supersolid phase: from theoretical speculation to the discovery of a new state of matter? A review of the past and present status of research. J. Phys. Soc. Jpn 77, 111010 (2008).

    ADS  Article  Google Scholar 

  23. 23

    Thouless, D. J. The flow of a dense superfluid. Ann. Phys. 52, 403–427 (1969).

    ADS  Article  Google Scholar 

  24. 24

    Andreev, A. F. & Lifshitz, I. M. Quantum theory of defects in crystals. Sov. Phys. JETP 29, 1107–1113 (1969).

    ADS  Google Scholar 

  25. 25

    Leggett, A. J. Can a solid be superfluid? Phys. Rev. Lett. 25, 1543–1546 (1970).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Meisel, F. Supersolid 4He: an overview of past searches and future possibilities. Physica B 178, 121–128 (1992).

    CAS  Article  Google Scholar 

  27. 27

    Boninsegni, M. et al. Fate of vacancy-induced supersolidity in 4He. Phys. Rev. Lett. 97, 080401 (2006).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Boninsegni, M. et al. Luttinger liquid in the core of screw dislocation in helium-4. Phys. Rev. Lett. 99, 035301 (2007).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Pollet, L. et al. Superfluidity of grain boundaries in solid 4He. Phys. Rev. Lett. 98, 135301 (2007).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Clark, A. C., West, J. T. & Chan, M. H. W. Nonclassical rotational inertia in helium crystals. Phys. Rev. Lett. 99, 135302 (2007).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Sasaki, S., Ishiguro, R., Caupin, F., Maris, H. J. & Balibar, S. Superfluidity of grain boundaries and supersolid behaviour. Science 313, 1098–1100 (2006).

    ADS  CAS  Article  Google Scholar 

  32. 32

    Sasaki, S., Caupin, F. & Balibar, S. Wetting properties of grain boundaries in solid 4He. Phys. Rev. Lett. 99, 205302 (2007).

    ADS  Article  Google Scholar 

  33. 33

    Ray, M. W. & Hallock, R. B. Observation of unusual mass transport in solid hcp 4He. Phys. Rev. Lett. 100, 235301 (2008).

    ADS  CAS  Article  Google Scholar 

  34. 34

    Sasaki, S., Caupin, F. & Balibar, S. Optical observations of disorder in solid helium-4. J. Low Temp. Phys. 153, 43–76 (2008).

    ADS  CAS  Article  Google Scholar 

  35. 35

    Balibar, S. & Caupin, F. Comment on “Observation of unusual mass transport in solid hcp 4He”. Phys. Rev. Lett. 101, 189601 (2008).

    ADS  Article  Google Scholar 

  36. 36

    Kim, E. et al. Effect of 3He impurities on the nonclassical response to oscillation of solid 4He. Phys. Rev. Lett. 100, 065301 (2008).

    ADS  CAS  Article  Google Scholar 

  37. 37

    Iwasa, I. & Suzuki, H. Sound velocity and attenuation in hcp 4He crystals containing 3He impurities. J. Phys. Soc. Jpn 49, 1722–1730 (1980).

    ADS  CAS  Article  Google Scholar 

  38. 38

    Paalanen, M. A., Bishop, D. J. & Dail, H. W. Dislocation motion in hcp 4He. Phys. Rev. Lett. 46, 664–667 (1981).

    ADS  CAS  Article  Google Scholar 

  39. 39

    Nussinov, Z., Balatsky, A. V., Graf, M. J. & Trugman, S. A. Origin of the decrease in the torsional-oscillator period of solid 4He. Phys. Rev. B 76, 014530 (2007).

    ADS  Article  Google Scholar 

  40. 40

    Yoo, C. D. & Dorsey, A. T. Theory of viscoelastic behavior of solid 4He. Phys. Rev. B 79, 100504 (2009).

    ADS  Article  Google Scholar 

  41. 41

    West, J. T., Syshchenko, O., Beamish, J. D. & Chan, M. H. W. Role of shear modulus and statistics in the supersolidity of helium. Nature Phys. 5, 598–601 (2009).

    ADS  CAS  Article  Google Scholar 

  42. 42

    Rittner, A. S. C. & Reppy, J. D. Probing the upper limit of nonclassical rotational inertia in solid helium-4. Phys. Rev. Lett. 101, 155301 (2008).

    ADS  Article  Google Scholar 

  43. 43

    Reppy, J. D. Is supersolid superfluid? Supersolids Banff 2009 <http://www.phys.ualberta.ca/supersolids/talks/> (2009).

  44. 44

    Balatsky, A. V., Graf, M. J., Nussinov, Z. & Trugman, S. A. Entropy of solid 4He: the possible role of a dislocation-induced glass. Phys. Rev. B 75, 094201 (2007).

    ADS  Article  Google Scholar 

  45. 45

    Balibar, S., Alles, H. & Parshin, A. Y. The surface of helium crystals. Rev. Mod. Phys. 77, 317–370 (2005).

    ADS  CAS  Article  Google Scholar 

  46. 46

    Ruutu, J. P. et al. Facet growth of helium-4 crystals at mK temperatures. Phys. Rev. Lett. 76, 4187–4190 (1996).

    ADS  CAS  Article  Google Scholar 

  47. 47

    Pantalei, C., Rojas, X., Edwards, D. O., Maris, H. J. & Balibar, S. How to prepare an ideal helium-4 crystal. J. Low Temp. Phys. doi: 10.1007/s10909-010-0159-6 (in the press).

  48. 48

    Aleinikava, D., Dedits, E., Kuklov, A. B. & Schmeltzer, D. Mechanical and superfluid properties of dislocations in solid 4He. Phys. Rev. B (submitted); preprint at <http://arxiv.org/abs/0812.0983> (2008).

  49. 49

    Allen, J. F. & Misener, A. D. Flow of liquid helium II. Nature 141, 75 (1938).

    ADS  CAS  Article  Google Scholar 

  50. 50

    Kapitza, P. Viscosity of liquid helium below the λ point. Nature 141, 74 (1938).

    ADS  CAS  Article  Google Scholar 

  51. 51

    Balibar, S. The discovery of superfluidity. J. Low Temp. Phys. 146, 441–470 (2007).

    ADS  CAS  Article  Google Scholar 

  52. 52

    Allen, J. F. & Jones, H. New phenomena connected with heat flow in helium II. Nature 141, 243–244 (1938).

    ADS  CAS  Article  Google Scholar 

  53. 53

    London, F. The λ phenomenon of liquid helium and the Bose–Einstein degeneracy. Nature 141, 643–644 (1938).

    ADS  CAS  Article  Google Scholar 

  54. 54

    Tisza, L. Transport phenomena in helium II. Nature 141, 913 (1938).

    ADS  CAS  Article  Google Scholar 

  55. 55

    Penrose, O. On the quantum mechanics of helium II. Phil. Mag. 42, 1373–1377 (1951).

    CAS  Article  Google Scholar 

  56. 56

    Kamerlingh Onnes, H. The resistance of pure mercury at helium temperatures. Commun. Phys. Lab. Univ. Leiden 120b (1911); The disappearance of the resistivity of mercury. Commun. Phys. Lab. Univ. Leiden 122b (1911); On the sudden change in the rate at which the resistance of mercury disappears. Commun. Phys. Lab. Univ. Leiden 124c (1911).

  57. 57

    Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 106, 162–164 (1957).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  58. 58

    Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  59. 59

    Osheroff, D. D., Richardson, R. C. & Lee, D. M. Evidence for a new phase in solid 3He. Phys. Rev. Lett. 28, 885–888 (1972).

    ADS  CAS  Article  Google Scholar 

  60. 60

    Osheroff, D. D., Gully, W. J. & Richardson, R. C. New magnetic phenomena in liquid 3He below 3 mK. Phys. Rev. Lett. 29, 920–923 (1972).

    ADS  CAS  Article  Google Scholar 

  61. 61

    Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. Observation of Bose–Einstein condensation in a dilute atomic vapour. Science 269, 198–201 (1995).

    ADS  CAS  Article  Google Scholar 

  62. 62

    Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

I acknowledge support from the Agence Nationale de la Recherche (grant BLAN07.1.215296).

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints. Correspondence should be addressed to the author (balibar@lps.ens.fr).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Balibar, S. The enigma of supersolidity. Nature 464, 176–182 (2010). https://doi.org/10.1038/nature08913

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing